亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Creating Knowledge Graph of Electric Power Equipment Faults Based on BERT–BiLSTM–CRF Model

计算机科学 知识图 编码器 人工智能 图形 知识表示与推理 条件随机场 变压器 自然语言处理 理论计算机科学 工程类 电气工程 操作系统 电压
作者
Fanqi Meng,Shuaisong Yang,Jingdong Wang,Lei Xia,Han Liu
出处
期刊:Journal of Electrical Engineering & Technology [Springer Science+Business Media]
卷期号:17 (4): 2507-2516 被引量:125
标识
DOI:10.1007/s42835-022-01032-3
摘要

Creating a large-scale knowledge graph of electric power equipment faults will facilitate the development of automatic fault diagnosis and intelligent question answering (QA) in the electric power industry. However, most existing methods have lower accuracy in Chinese entity recognition, thus it is hard to build such a high-quality knowledge graph by extracting knowledge from Chinese technical literature. To solve the problem, a novel model called BERT–BiLSTM–CRF is proposed. It blends Bi-directional Encoder Representation from Transformers (BERT), Bi-directional Long Short-Term Memory (BiLSTM), and Conditional Random Field (CRF). The model firstly identifies and extracts electric power equipment entities from pre-processed Chinese technical literature. Then, the semantic relations between the entities are extracted based on the relation classification method based on dependency parsing. Finally, the extracted knowledge is stored in the Neo4j database in the form of the triplet and visualized in the form of a graph. Through the above steps, a Chinese knowledge graph of electric power equipment faults can be built. The novelty of the model just lies in its subtle blend: the BERT module can not only learn phrase-level information representation, but also learn rich semantic information features; the CRF module realizes the constraint on the label prediction value and reduces the irregular recognition rate, so the accuracy rate of entity recognition is improved. Taking the Chinese technological literature, which is about fault diagnosis of electric power equipment as the experimental object, the experimental results show that the model identifies and extracts Chinese entities more accurately than traditional methods. Thus, a comprehensive and accurate Chinese knowledge graph of electric power equipment faults could be constructed more easily.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
从容芮完成签到,获得积分0
3秒前
一只独角兽完成签到,获得积分20
4秒前
9秒前
loooooong完成签到,获得积分20
13秒前
Grayball应助科研通管家采纳,获得10
13秒前
Grayball应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
13秒前
赘婿应助科研通管家采纳,获得30
14秒前
aldehyde应助科研通管家采纳,获得10
14秒前
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
aldehyde应助科研通管家采纳,获得20
14秒前
和谐板栗完成签到 ,获得积分10
18秒前
20秒前
Victor完成签到,获得积分10
27秒前
大壮完成签到,获得积分10
29秒前
35秒前
xyq发布了新的文献求助20
35秒前
LYL完成签到,获得积分10
38秒前
38秒前
长风发布了新的文献求助10
39秒前
迪迪迪迪迪完成签到 ,获得积分10
43秒前
45秒前
51秒前
dlfg发布了新的文献求助10
57秒前
1分钟前
xyq完成签到,获得积分10
1分钟前
1分钟前
1分钟前
西门浩宇发布了新的文献求助10
1分钟前
123lllqwer发布了新的文献求助10
1分钟前
dlfg完成签到,获得积分10
1分钟前
1分钟前
汤米bb完成签到,获得积分10
1分钟前
小白发布了新的文献求助10
1分钟前
N2发布了新的文献求助10
1分钟前
汤米bb发布了新的文献求助10
1分钟前
小白完成签到,获得积分10
1分钟前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3901724
求助须知:如何正确求助?哪些是违规求助? 3446507
关于积分的说明 10844830
捐赠科研通 3171588
什么是DOI,文献DOI怎么找? 1752394
邀请新用户注册赠送积分活动 847212
科研通“疑难数据库(出版商)”最低求助积分说明 789757