Multi-modal Convolutional Dictionary Learning

计算机科学 人工智能 卷积神经网络 深度学习 模式识别(心理学) 自然语言处理 特征学习 机器学习
作者
Fangyuan Gao,Xin Deng,Mai Xu,Jingyi Xu,Pier Luigi Dragotti
标识
DOI:10.1109/tip.2022.3141251
摘要

Convolutional dictionary learning has become increasingly popular in signal and image processing for its ability to overcome the limitations of traditional patch-based dictionary learning. Although most studies on convolutional dictionary learning mainly focus on the unimodal case, real-world image processing tasks usually involve images from multiple modalities, e.g., visible and near-infrared (NIR) images. Thus, it is necessary to explore convolutional dictionary learning across different modalities. In this paper, we propose a novel multi-modal convolutional dictionary learning algorithm based on the model from [1], which efficiently correlates different image modalities and fully considers neighborhood information at the image level. In this model, each modality is represented by two convolutional dictionaries, in which one dictionary is for common feature representation and the other is for unique feature representation. The model is constrained by the requirement that the convolutional sparse representations (CSRs) for the common features should be the same across different modalities, considering that these images are captured from the same scene. We propose a new training method based on the alternating direction method of multipliers (ADMM) to alternatively learn the common and unique dictionaries in the discrete Fourier transform (DFT) domain. We show that our model converges in less than 20 iterations between the convolutional dictionary updating and the CSRs calculation. The effectiveness of the proposed dictionary learning algorithm is demonstrated on various multimodal image processing tasks, achieves better performance than both dictionary learning methods and deep learning based methods with limited training data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
最美夕阳红完成签到,获得积分10
1秒前
1秒前
Willy完成签到,获得积分10
3秒前
感动依霜完成签到 ,获得积分10
4秒前
英姑应助Wang采纳,获得10
5秒前
cdercder应助科研通管家采纳,获得10
9秒前
cdercder应助科研通管家采纳,获得10
9秒前
现实的大白完成签到 ,获得积分10
24秒前
vivelejrlee完成签到,获得积分10
26秒前
fff完成签到 ,获得积分10
28秒前
胜胜糖完成签到 ,获得积分10
30秒前
宇文雨文完成签到 ,获得积分10
38秒前
哈哈哈完成签到 ,获得积分10
49秒前
哥哥发布了新的文献求助10
49秒前
回首不再是少年完成签到,获得积分0
50秒前
zyb完成签到 ,获得积分10
52秒前
整齐的蜻蜓完成签到 ,获得积分10
56秒前
高高的丹雪完成签到 ,获得积分10
59秒前
苻醉山完成签到 ,获得积分10
1分钟前
勤奋的立果完成签到 ,获得积分10
1分钟前
ng完成签到 ,获得积分10
1分钟前
1分钟前
qingxinhuo完成签到 ,获得积分10
1分钟前
Wang发布了新的文献求助10
1分钟前
义气萝卜头完成签到 ,获得积分10
1分钟前
1分钟前
小刺猬完成签到,获得积分10
1分钟前
科研通AI5应助丁丁采纳,获得10
1分钟前
逍遥呱呱完成签到 ,获得积分10
1分钟前
1分钟前
连难胜完成签到 ,获得积分10
1分钟前
unowhoiam完成签到 ,获得积分10
1分钟前
1分钟前
小鳄鱼一只完成签到 ,获得积分10
1分钟前
雪白溪流完成签到 ,获得积分10
2分钟前
秋夜临完成签到,获得积分10
2分钟前
minnie完成签到 ,获得积分10
2分钟前
li完成签到 ,获得积分10
2分钟前
cdercder应助科研通管家采纳,获得10
2分钟前
柚子完成签到 ,获得积分10
2分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815909
求助须知:如何正确求助?哪些是违规求助? 3359386
关于积分的说明 10402429
捐赠科研通 3077212
什么是DOI,文献DOI怎么找? 1690236
邀请新用户注册赠送积分活动 813667
科研通“疑难数据库(出版商)”最低求助积分说明 767743