Characterization and identification of microplastics using Raman spectroscopy coupled with multivariate analysis

微塑料 主成分分析 拉曼光谱 化学计量学 线性判别分析 多元统计 化学 环境化学 聚乙烯 支持向量机 分析化学(期刊) 模式识别(心理学) 生物系统 人工智能 色谱法 机器学习 计算机科学 有机化学 光学 物理 生物
作者
Naifu Jin,Yizhi Song,Rui Ma,Junyi Li,Guanghe Li,Dayi Zhang
出处
期刊:Analytica Chimica Acta [Elsevier BV]
卷期号:1197: 339519-339519 被引量:115
标识
DOI:10.1016/j.aca.2022.339519
摘要

The manufacture and use of plastic products have resulted in the release and spread of a massive amount of microplastics. Identifying and quantifying microplastics is challenging due to their small size and complicated composition. Although vibrational spectroscopy has been applied to analyze microplastics, its reliability and throughput are limited by the challenges to distinguish the pending alterations manually and the lack of a spectra-based automated microplastic classification model. The present study applied Raman spectroscopy coupled with multivariate analysis to develop a new and robust analytical method to comprehensively interrogate the spectral profiles of seven microplastic references and real microplastic samples post-exposure to environmental stresses. Besides identifying unique Raman peaks of individual microplastics, their whole spectra were separated by principal component analysis (PCA) and linear discriminant analysis (LDA). Support vector machine (SVM) classification achieved an accuracy rate of over 98% for polypropylene, polyethylene terephthalate, polyvinyl chloride, polycarbonate, polyamide, and over 70% for high-density polyethylene and low-density polyethylene. Real microplastic samples from the breakdown of snack boxes, mineral water bottles, juice bottles, and medicine vials were also matched to their chemical components by SVM with an overall sensitivity, specificity, and accuracy of 98.1%, 99.4%, and 99.1%, respectively. Additionally, post-exposure to environmental stressors, 1D PCA-LDA score plots could still distinguish microplastic type, and the developed SVM classification achieved an accuracy of 96.75% in the real-world scenario. These findings prove Raman spectroscopy coupled with multivariate analysis as an ideal tool to distinguish the types and environmental exposure of microplastics, demonstrating great potential for microplastic automatic detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助小康采纳,获得10
刚刚
orixero应助张琳采纳,获得10
刚刚
1秒前
微笑发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助30
3秒前
3秒前
4秒前
yang完成签到,获得积分10
5秒前
6秒前
Owen应助搞怪羊采纳,获得10
6秒前
无花果应助Stellan采纳,获得10
6秒前
大喵发布了新的文献求助10
7秒前
7秒前
负责的调料汁完成签到,获得积分10
7秒前
酷波er应助rrrick采纳,获得10
8秒前
8秒前
8秒前
9秒前
zxy完成签到,获得积分10
10秒前
11秒前
11秒前
鱼儿完成签到,获得积分10
12秒前
Leo发布了新的文献求助10
12秒前
12秒前
bkagyin应助微笑采纳,获得10
12秒前
丫丫完成签到,获得积分10
12秒前
爆米花应助Yvette2024采纳,获得10
12秒前
英姑应助pqyang采纳,获得10
13秒前
戴士杰686发布了新的文献求助20
14秒前
单薄店员发布了新的文献求助10
14秒前
Rondab应助wangjius采纳,获得10
15秒前
冷静的夏槐完成签到,获得积分10
16秒前
16秒前
CR7应助fuhao采纳,获得20
17秒前
qing发布了新的文献求助10
17秒前
17秒前
vffg发布了新的文献求助10
20秒前
20秒前
小蘑菇应助潘pan采纳,获得30
21秒前
22秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Global Eyelash Assessment scale (GEA) 500
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4026072
求助须知:如何正确求助?哪些是违规求助? 3565913
关于积分的说明 11350573
捐赠科研通 3296827
什么是DOI,文献DOI怎么找? 1815901
邀请新用户注册赠送积分活动 890291
科研通“疑难数据库(出版商)”最低求助积分说明 813466