A K-Means clustering and SVM based hybrid concept drift detection technique for network anomaly detection

概念漂移 计算机科学 异常检测 数据挖掘 支持向量机 聚类分析 数据流挖掘 k均值聚类 人工智能 异常(物理) 机器学习 模式识别(心理学) 物理 凝聚态物理
作者
Meenal Jain,Gagandeep Kaur,Vikas Saxena
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:193: 116510-116510 被引量:58
标识
DOI:10.1016/j.eswa.2022.116510
摘要

• Using K-Means clustering to reduce the sample size of captured network traffic. • Development of two drift detection techniques for handling drift. • Measure severity of concept drift. Today’s internet data primarily consists of streamed data from various applications like sensor networks, banking data and telecommunication data networks. A new field of study, data stream mining has been gaining popularity to study streamed data behavior. Detection of anomalies in the network traffic also finds its applicability in this context. However traditional machine learning algorithms suffer in providing consistent high accuracy values and give high false alarms. This is due to the presence of concept drift in the captured data streams. Concept drift describes unknown changes in the characteristics of network data over time. Therefore, to handle presence concept drift new methodologies and techniques for drift detection, understanding and adaptation are required. In this paper, we have proposed two techniques, an Error Rate Based Concept Drift Detection and Data Distribution Based Concept Drift Detection and studied their impact. Furthermore, sliding window based data capturing and drift analyzing combined with K-Means Clustering has been used for reducing data size and upgrading training dataset. We have used the Support Vector Machine (SVM) classifier for anomaly detection and retraining of the model has been initiated based on statistical tests. The experiments have been performed on three datasets, namely, generated Testbed Dataset, NSL-KDD and CIDDS-2017. Detection accuracy, KL-Divergence and Kappa Statistics have been used to study the severity of the concept drift in the datasets. After applying the proposed approach, the SVM has been shown to have a better classification accuracy of 93.52%, 99.80% and 91.33% respectively. We achieved a precision rate of 91.84%, 99.1% and 88.3%, a recall rate of 94.30%, 99.2% and 91.7% with an F1 score of 92.9%, 99.15% and 89.6% respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
甜橙子发布了新的文献求助10
1秒前
nowfitness完成签到,获得积分10
2秒前
Jane发布了新的文献求助10
2秒前
2秒前
linda完成签到,获得积分20
3秒前
7秒前
迅速曲奇发布了新的文献求助10
8秒前
8秒前
9秒前
甜橙子完成签到,获得积分20
9秒前
11222浅完成签到,获得积分20
10秒前
11秒前
江河不可停完成签到,获得积分10
12秒前
123发布了新的文献求助10
13秒前
ShumanTan发布了新的文献求助50
14秒前
既温柔发布了新的文献求助10
15秒前
16秒前
shanika发布了新的文献求助10
18秒前
高xuewen发布了新的文献求助20
19秒前
火星上仰完成签到,获得积分10
20秒前
21秒前
李爱国应助我爱Chem采纳,获得10
22秒前
24秒前
24秒前
25秒前
魏立翔完成签到,获得积分10
25秒前
25秒前
搜集达人应助阿里嘎多采纳,获得10
25秒前
优雅傲儿发布了新的文献求助10
25秒前
外向蜡烛发布了新的文献求助10
26秒前
27秒前
婷婷完成签到,获得积分10
28秒前
29秒前
29秒前
An_Jing完成签到,获得积分10
29秒前
29秒前
科研通AI5应助tim采纳,获得10
30秒前
桐桐应助小希采纳,获得10
31秒前
bobo发布了新的文献求助10
31秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800411
求助须知:如何正确求助?哪些是违规求助? 3345653
关于积分的说明 10326420
捐赠科研通 3062122
什么是DOI,文献DOI怎么找? 1680875
邀请新用户注册赠送积分活动 807249
科研通“疑难数据库(出版商)”最低求助积分说明 763572