Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
内向的小凡完成签到,获得积分0
7秒前
8秒前
忧虑的代容完成签到,获得积分10
10秒前
11秒前
11秒前
Brian发布了新的文献求助10
12秒前
小魔芋完成签到 ,获得积分10
14秒前
14秒前
Olsters完成签到 ,获得积分10
15秒前
Whim完成签到,获得积分0
17秒前
lunar完成签到 ,获得积分10
17秒前
ira发布了新的文献求助10
18秒前
18秒前
ludwig完成签到,获得积分10
18秒前
吴云鹏发布了新的文献求助10
21秒前
Brian完成签到,获得积分10
22秒前
骆大驼发布了新的文献求助10
23秒前
浅笑成风完成签到,获得积分10
25秒前
xu关注了科研通微信公众号
26秒前
28秒前
动人的亦云完成签到 ,获得积分10
30秒前
无花果应助cure采纳,获得10
30秒前
影默完成签到,获得积分10
30秒前
饱满的大碗完成签到 ,获得积分10
32秒前
Qintt完成签到 ,获得积分10
32秒前
黑米粥发布了新的文献求助10
34秒前
Shandongdaxiu发布了新的文献求助10
35秒前
木桶人plus完成签到 ,获得积分10
36秒前
qiqi发布了新的文献求助10
37秒前
AamirAli完成签到,获得积分10
39秒前
斯文败类应助advance采纳,获得10
44秒前
49秒前
阔达曲奇发布了新的文献求助10
50秒前
完美世界应助985博士采纳,获得10
51秒前
852应助L_online采纳,获得50
51秒前
善学以致用应助qiqi采纳,获得10
51秒前
长歌完成签到,获得积分10
55秒前
wind发布了新的文献求助10
55秒前
斯文败类应助任性诗蕾采纳,获得10
55秒前
55秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777940
求助须知:如何正确求助?哪些是违规求助? 3323546
关于积分的说明 10214860
捐赠科研通 3038738
什么是DOI,文献DOI怎么找? 1667634
邀请新用户注册赠送积分活动 798236
科研通“疑难数据库(出版商)”最低求助积分说明 758315