Estimating the degree of conflict in speech by employing Bag-of-Audio-Words and Fisher Vectors

学位(音乐) 计算机科学 语音识别 自然语言处理 人工智能 声学 物理
作者
Gábor Gosztolya
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:205: 117613-117613 被引量:1
标识
DOI:10.1016/j.eswa.2022.117613
摘要

The automatic detection of conflict situations from human speech has several straightforward applications such as the surveillance of public spaces, providing feedback about employees in call centers, and other roles in human–computer interactions. In this study we examine the potential of different state-of-the-art feature extraction techniques, all developed to be able to efficiently represent a variable-length speech utterance by a fixed-length feature vector. Besides the ‘ComParE functionals’ attribute set, which became the de facto standard feature set in the area of computational paralinguistics (which focuses on the automatic assessment of non-verbal phenomena being present in human speech), we experiment with two methods introduced quite recently: Bag-of-Audio-Words (BoAW) and Fisher Vectors (FV). Using three standard basic, low-level feature sets, we found that, while BoAW proved to be quite sensitive to its meta-parameter settings, with Fisher Vectors we were able to achieve state-of-the-art conflict intensity estimation performance on a public and widely-used corpus. Furthermore, by applying Principal Component Analysis on the frame-level attributes, we managed to achieve a 30% speed-up in the feature extraction step. Interestingly, in contrast with our previous paralinguistic studies, combining the different predictions with these feature extraction approaches, we were unable to achieve any further significant improvement. The highest correlation coefficient values we got on the test set lay in the range 0.850–0.860, while the authors of several previous studies were able to achieve similar values (i.e. 0.849, 0.856 and 0.853). Considering that in this task the target score to be estimated (i.e. the intensity of the conflict being present in the actual clip) is definitely prone to subjectivity and therefore to label noise, current efforts have probably achieved the highest correlation coefficients attainable, and match human performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Arsenc发布了新的文献求助10
1秒前
李庭福发布了新的文献求助10
2秒前
2秒前
orixero应助爱听歌的万言采纳,获得10
2秒前
核桃应助robot_1995采纳,获得10
2秒前
2秒前
英姑应助one采纳,获得10
3秒前
凡不凡人发布了新的文献求助10
3秒前
清脆慕蕊完成签到,获得积分10
3秒前
乐乐应助落后的老三采纳,获得10
3秒前
啊啊啊啊啊啊完成签到,获得积分10
4秒前
duan完成签到,获得积分10
5秒前
幽默的乐安完成签到 ,获得积分20
5秒前
君安完成签到 ,获得积分10
6秒前
隐形曼青应助刘谦益采纳,获得10
8秒前
8秒前
好运连连完成签到 ,获得积分10
9秒前
舒适哈密瓜完成签到,获得积分10
9秒前
10秒前
王晨光完成签到 ,获得积分10
11秒前
LYSM应助lyt采纳,获得10
11秒前
12秒前
情怀应助阿六儿采纳,获得10
12秒前
所所应助gxg采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
lsl发布了新的文献求助10
14秒前
wanci应助凡不凡人采纳,获得10
15秒前
one发布了新的文献求助10
17秒前
阿楠发布了新的文献求助10
17秒前
卤肉饭与石榴汁完成签到,获得积分10
17秒前
17秒前
17秒前
Rachel发布了新的文献求助10
17秒前
小庄完成签到 ,获得积分10
17秒前
威武的汉堡完成签到,获得积分10
19秒前
李庭福完成签到,获得积分10
20秒前
gengsumin发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394134
求助须知:如何正确求助?哪些是违规求助? 4515426
关于积分的说明 14053922
捐赠科研通 4426623
什么是DOI,文献DOI怎么找? 2431456
邀请新用户注册赠送积分活动 1423562
关于科研通互助平台的介绍 1402541