摘要
Transboundary and Emerging DiseasesVolume 69, Issue 5 p. e2661-e2676 ORIGINAL ARTICLE Dissemination of virulence and resistance genes among Klebsiella pneumoniae via outer membrane vesicle: An important plasmid transfer mechanism to promote the emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae Zhongxing Wang, Zhongxing Wang Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, ChinaSearch for more papers by this authorZhe Wen, Zhe Wen Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, ChinaSearch for more papers by this authorMin Jiang, Min Jiang MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, ChinaSearch for more papers by this authorFufang Xia, Fufang Xia MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, ChinaSearch for more papers by this authorMin Wang, Min Wang Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, ChinaSearch for more papers by this authorXiangkai Zhuge, Corresponding Author Xiangkai Zhuge [email protected] orcid.org/0000-0002-9034-0580 Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China Correspondence Xiangkai Zhuge, Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China. Email: [email protected] Jianjun Dai, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Address: No.1 Weigang road, Nanjing, Jiangsu Province, China.Email: [email protected]Search for more papers by this authorJianjun Dai, Corresponding Author Jianjun Dai [email protected] orcid.org/0000-0002-9123-5731 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China College of Pharmacy, China Pharmaceutical University, Nanjing, China Correspondence Xiangkai Zhuge, Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China. Email: [email protected] Jianjun Dai, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Address: No.1 Weigang road, Nanjing, Jiangsu Province, China.Email: [email protected]Search for more papers by this author Zhongxing Wang, Zhongxing Wang Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, ChinaSearch for more papers by this authorZhe Wen, Zhe Wen Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, ChinaSearch for more papers by this authorMin Jiang, Min Jiang MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, ChinaSearch for more papers by this authorFufang Xia, Fufang Xia MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, ChinaSearch for more papers by this authorMin Wang, Min Wang Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, ChinaSearch for more papers by this authorXiangkai Zhuge, Corresponding Author Xiangkai Zhuge [email protected] orcid.org/0000-0002-9034-0580 Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu, China MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China Correspondence Xiangkai Zhuge, Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China. Email: [email protected] Jianjun Dai, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Address: No.1 Weigang road, Nanjing, Jiangsu Province, China.Email: [email protected]Search for more papers by this authorJianjun Dai, Corresponding Author Jianjun Dai [email protected] orcid.org/0000-0002-9123-5731 MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China College of Pharmacy, China Pharmaceutical University, Nanjing, China Correspondence Xiangkai Zhuge, Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226019, China. Email: [email protected] Jianjun Dai, Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; Address: No.1 Weigang road, Nanjing, Jiangsu Province, China.Email: [email protected]Search for more papers by this author First published: 09 June 2022 https://doi.org/10.1111/tbed.14615Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Klebsiella pneumoniae is well-known opportunistic enterobacteria involved in complex clinical infections in humans and animals. The domestic animals might be a source of the multidrug-resistant virulent K. pneumoniae to humans. K. pneumoniae infections in domestic animals are considered as an emergent global concern. The horizontal gene transfer plays essential roles in bacterial genome evolution by spread of virulence and resistance determinants. However, the virulence genes can be transferred horizontally via K. pneumoniae-derived outer membrane vesicles (OMVs) remains to be unreported. In this study, we performed complete genome sequencing of two K. pneumoniae HvK2115 and CRK3022 with hypervirulent or carbapenem-resistant traits. OMVs from K. pneumoniae HvK2115 and CRK3022 were purified and observed. The carriage of virulence or resistance genes in K. pneumoniae OMVs was identified. The influence of OMVs on the horizontal transfer of virulence-related or drug-resistant plasmids among K. pneumoniae strains was evaluated thoroughly. The plasmid transfer to recipient bacteria through OMVs was identified by polymerase chain reaction, pulsed field gel electrophoresis and Southern blot. This study revealed that OMVs could mediate the intraspecific and interspecific horizontal transfer of the virulence plasmid phvK2115. OMVs could simultaneously transfer two resistance plasmids into K. pneumoniae and Escherichia coli recipient strains. OMVs-mediated horizontal transfer of virulence plasmid phvK2115 could significantly enhance the pathogenicity of human carbapenem-resistant K. pneumoniae CRK3022. The CRK3022 acquired the virulence plasmid phvK2115 could become a CR-hvKp strain. It was critically important that OMVs-mediated horizontal transfer of phvK2115 lead to the coexistence of virulence and carbapenem-resistance genes in K. pneumoniae, resulting in the emerging of carbapenem-resistant hypervirulent K. pneumoniae. CONFLICT OF INTEREST The author(s) declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article. Open Research DATA AVAILABILITY STATEMENT All data generated or analyzed during this study are included in this published article. Supporting Information Filename Description tbed14615-sup-0001-TableS1.docx26.6 KB Table S1. Bacterial strains, plasmid and oligonucleotide sequences of PCR primers used in this study. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article. REFERENCES Adler, A., Khabra, E., Paikin, S., & Carmeli, Y. (2016a). Dissemination of the bla(KPC) gene by clonal spread and horizontal gene transfer: Comparative study of incidence and molecular mechanisms. Journal of Antimicrobial Chemotherapy, 71(8), 2143–2146. https://doi.org/10.1093/jac/dkw106 Bagley, S. T. (1985). Habitat association of Klebsiella species. Infection Control, 6(2), 52–58. https://doi.org/10.1017/s0195941700062603 Bevan, E. R., Jones, A. M., & Hawkey, P. M. (2017). Global epidemiology of CTX-M beta-lactamases: Temporal and geographical shifts in genotype. Journal of Antimicrobial Chemotherapy, 72(8), 2145–2155. https://doi.org/10.1093/jac/dkx146 Beveridge, T. J. (1999). Structures of gram-negative cell walls and their derived membrane vesicles. Journal of Bacteriology, 181(16), 4725–4733. https://doi.org/10.1128/Jb.181.16.4725-4733.1999 Bialek-Davenet, S., Criscuolo, A., Ailloud, F., Passet, V., Jones, L., Delannoy-Vieillard, A. S., Garin, B., Le Hello, S., Arlet, G., Nicolas-Chanoine, M. H., Decré, D., & Brisse, S. (2014). Genomic definition of hypervirulent and multidrug-resistant Klebsiella pneumoniae clonal groups. Emerging Infectious Diseases, 20(11), 1812–1820. https://doi.org/10.3201/eid2011.140206 Bielaszewska, M., Daniel, O., Karch, H., & Mellmann, A. (2020a). Dissemination of the bla(CTX-M-15) gene among Enterobacteriaceae via outer membrane vesicles. Journal of Antimicrobial Chemotherapy, 75(9), 2442–2451. https://doi.org/10.1093/jac/dkaa214 Bielaszewska, M., Daniel, O., Karch, H., & Mellmann, A. (2020b). Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles. Journal of Antimicrobial Chemotherapy, 75(9), 2442–2451. https://doi.org/10.1093/jac/dkaa214 Bielaszewska, M., Ruter, C., Kunsmann, L., Greune, L., Bauwens, A., Zhang, W. L., Kuczius, T., Kim, K. S., Mellmann, A., Schmidt, M. A., & Karch, H. (2013). Enterohemorrhagic Escherichia coli hemolysin employs outer membrane vesicles to target mitochondria and cause endothelial and epithelial apoptosis. PLoS Pathogens, 9(12), https://doi.org/10.1371/journal.ppat.1003797 Brown, L., Wolf, J. M., Prados-Rosales, R., & Casadevall, A. (2015). Through the wall: Extracellular vesicles in Gram-positive bacteria, mycobacteria and fungi. Nature Reviews Microbiology, 13(10), 620–630. https://doi.org/10.1038/nrmicro3480 Carattoli, A. (2009). Resistance plasmid families in Enterobacteriaceae. Antimicrobial Agents and Chemotherapy, 53(6), 2227–2238. https://doi.org/10.1128/Aac.01707-08 Catalan-Najera, J. C., Garza-Ramos, U., & Barrios-Camacho, H. (2017). Hypervirulence and hypermucoviscosity: Two different but complementary Klebsiella spp. phenotypes? Virulence, 8(7), 1111–1123. https://doi.org/10.1080/21505594.2017.1317412 Chatterjee, S., Mondal, A., Mitra, S., & Basu, S. (2017). Acinetobacter baumannii transfers the blaNDM-1 gene via outer membrane vesicles. Journal of Antimicrobial Chemotherapy, 72(8), 2201–2207. https://doi.org/10.1093/jac/dkx131 Chen, J. W., Zeng, Y., Zhang, R., & Cai, J. C. (2021). In vivo emergence of colistin and tigecycline resistance in carbapenem-resistant hypervirulent Klebsiella pneumoniae during antibiotics treatment. Frontiers in Microbiology, 12, https://doi.org/10.3389/fmicb.2021.702956 Chew, Y., Chung, H. Y., Lin, P. Y., Wu, D. C., Huang, S. K., & Kao, M. C. (2021). Outer membrane vesicle production by Helicobacter pylori represents an approach for the delivery of virulence factors CagA, VacA and UreA into human gastric adenocarcinoma (AGS) cells. International Journal of Molecular Sciences, 22(8), . https://doi.org/10.3390/ijms22083942 Colom, K., Perez, J., Alonso, R., Fernandez-Aranguiz, A., Larino, E., & Cisterna, R. (2003). Simple and reliable multiplex PCR assay for detection of blaTEM, bla(SHV) and blaOXA-1 genes in Enterobacteriaceae. Fems Microbiology Letters, 223(2), 147–151. https://doi.org/10.1016/S0378-1097(03)00306-9 Dekoninck, K., Letoquart, J., Laguri, C., Demange, P., Bevernaegie, R., Simorre, J. P., Dehu, O., Iorga, B. I., Elias, B., Cho, S. H., & Collet, J. F. (2020). Defining the function of OmpA in the Rcs stress response. Elife, 9, https://doi.org/10.7554/eLife.60861 Dell'Annunziata, F., Dell'Aversana, C., Doti, N., Donadio, G., Dal Piaz, F., Izzo, V., De Filippis, A., Galdiero, M., Altucci, L., Boccia, G., Galdiero, M., Folliero, V., & Franci, G. (2021). Outer membrane vesicles derived from Klebsiella pneumoniae are a driving force for horizontal gene transfer. International Journal of Molecular Sciences, 22(16), https://doi.org/10.3390/ijms22168732 Deo, P., Chow, S. H., Hay, I. D., Kleifeld, O., Costin, A., Elgass, K. D., Jiang, J. H., Ramm, G., Gabriel, K., Dougan, G., Lithgow, T., Heinz, E., & Naderer, T. (2018). Outer membrane vesicles from Neisseria gonorrhoeae target PorB to mitochondria and induce apoptosis. Plos Pathogens, 14(3), e1006945. https://doi.org/10.1371/journal.ppat.1006945 Diekema, D. J., Hsueh, P. R., Mendes, R. E., Pfaller, M. A., Rolston, K. V., Sader, H. S., & Jones, R. N. (2019). The microbiology of bloodstream infection: 20-Year trends from the SENTRY antimicrobial surveillance program. Antimicrobial Agents and Chemotherapy, 63(7), https://doi.org/10.1128/AAC.00355-19 Dietert, K., Gutbier, B., Wienhold, S. M., Reppe, K., Jiang, X. H., Yao, L., Chaput, C., Naujoks, J., Brack, M., Kupke, A., Peteranderl, C., Becker, S., von Lachner, C., Baal, N., Slevogt, H., Hocke, A. C., Witzenrath, M., Opitz, B., Herold, S., … Gruber, A. D. (2017). Spectrum of pathogen- and model-specific histopathologies in mouse models of acute pneumonia. Plos One, 12(11), https://doi.org/10.1371/journal.pone.0188251 Ellis, T. N., & Kuehn, M. J. (2010). Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiology and Molecular Biology Reviews, 74(1), 81–94. https://doi.org/10.1128/MMBR.00031-09 Green, M. R., & Sambrook, J. (2021). Analysis of DNA by Southern blotting. Cold Spring Harbor Protocols, 2021(7), https://doi.org/10.1101/pdb.top100396 Hegstad, K., Mylvaganam, H., Janice, J., Josefsen, E., Sivertsen, A., & Skaare, D. (2020). Role of horizontal gene transfer in the development of multidrug resistance. in Haemophilus influenzae. mSphere, 5(1), https://doi.org/10.1128/mSphere.00969-19 Hu, R. J., Li, J., Zhao, Y. Z., Lin, H., Liang, L., Wang, M. M., Liu, H., Min, Y., Gao, Y., & Yang, M. M. (2020). Exploiting bacterial outer membrane vesicles as a cross-protective vaccine candidate against avian pathogenic Escherichia coli (APEC). Microbial Cell Factories, 19(1), https://doi.org/10.1186/s12934-020-01372-7 Huang, Q. S., Liao, W. J., Xiong, Z. J., Li, D., Du, F. L., Xiang, T. X., Wei, D., Wan, L. G., Liu, Y., & Zhang, W. (2021). Prevalence of the NTEKPC-I on IncF plasmids among hypervirulent Klebsiella pneumoniae isolates in Jiangxi Province. South China, Frontiers in Microbiology, 12, https://doi.org/10.3389/fmicb.2021.622280 Jun, S. R., Sims, G. E., Wu, G. A., & Kim, S. H. (2010). Whole-proteome phylogeny of prokaryotes by feature frequency profiles: An alignment-free method with optimal feature resolution. PNAS, 107(1), 133–138. https://doi.org/10.1073/pnas.0913033107 Kolling, G. L., & Matthews, K. R. (1999). Export of virulence genes and Shiga toxin by membrane vesicles of Escherichia coli O157:H7. Applied and environmental microbiology, 65(5), 1843–1848. https://doi.org/10.1128/AEM.65.5.1843-1848.1999 Kuehn, M. J., & Kesty, N. C. (2005). Bacterial outer membrane vesicles and the host-pathogen interaction. Genes & Development, 19(22), 2645–2655. https://doi.org/10.1101/gad.1299905 Lerminiaux, N. A., & Cameron, A. D. S. (2019). Horizontal transfer of antibiotic resistance genes in clinical environments. Canadian Journal of Microbiology, 65(1), 34–44. https://doi.org/10.1139/cjm-2018-0275 Lu, Y., Zeng, J., Wang, L., Lan, K., E, S., Wang, L., Xiao, Q., Luo, Q., Huang, X., Huang, B., &., & Chen, C. (2017). Antibiotics promote Escherichia coli-Pseudomonas aeruginosa conjugation through inhibiting quorum sensing. Antimicrobial Agents and Chemotherapy, 61(12), https://doi.org/10.1128/AAC.01284-17 Machado, E., Coque, T. M., Canton, R., Baquero, F., Sousa, J. C., Peixe, L., & Study, P. R. G. (2006). Dissemination in Portugal of CTX-M-15-, OXA-1-, and TEM-1-producing Enterobacteriaceae strains containing the aac(6')-Ib-cr gene, which encodes an aminoglycoside- and fluoroquinolone-modifying enzyme. Antimicrobial Agents and Chemotherapy, 50(9), 3220–3221. https://doi.org/10.1128/AAC.00473-06 Mashaly, M. E., & Mashaly, G. E. (2021). Activity of imipenem/relebactam on Klebsiella pneumoniae with different mechanisms of imipenem non-susceptibility. Iran J Microbiol, 13(6), 785–792. https://doi.org/10.18502/ijm.v13i6.8080 Mathers, A. J., Peirano, G., & Pitout, J. D. (2015). The role of epidemic resistance plasmids and international high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. Clinical Microbiology Reviews, 28(3), 565–591. https://doi.org/10.1128/CMR.00116-14 McCaig, W. D., Koller, A., & Thanassi, D. G. (2013). Production of outer membrane vesicles and outer membrane tubes by Francisella novicida. Journal of Bacteriology, 195(6), 1120–1132. https://doi.org/10.1128/JB.02007-12 Nassif, X., Fournier, J. M., Arondel, J., & Sansonetti, P. J. (1989). Mucoid phenotype of Klebsiella pneumoniae is a plasmid-encoded virulence factor. Infection and Immunity, 57(2), 546–552. https://doi.org/10.1128/iai.57.2.546-552.1989 Navarro, M. O. P., Simionato, A. S., Perez, J. C. B., Barazetti, A. R., Emiliano, J., Niekawa, E. T. G., Andreata, M. F. L., Modolon, F., Dealis, M. L., Araújo, E. J. A., Carlos, T. M., Scarpelim, O. J., da Silva, D. B., Chryssafidis, A. L., Bruheim, P., & Andrade, G. (2019). Fluopsin C for treating multidrug-resistant infections: In vitro activity against clinically important strains and in vivo efficacy against carbapenemase-producing Klebsiella pneumoniae. Frontiers in Microbiology, 10, https://doi.org/10.3389/fmicb.2019.02431 Orench-Rivera, N., & Kuehn, M. J. (2016). Environmentally controlled bacterial vesicle-mediated export. Cellular Microbiology, 18(11), 1525–1536. https://doi.org/10.3390/microorganisms8040542 Projahn, M., von Tippelskirch, P., Semmler, T., Guenther, S., Alter, T., & Roesler, U. (2019). Contamination of chicken meat with extended-spectrum beta-lactamase producing-Klebsiella pneumoniae and Escherichia coli during scalding and defeathering of broiler carcasses. Food Microbiology, 77, 185–191. https://doi.org/10.1016/j.fm.2018.09.010 Ribeiro, M. G., de Morais, A. B. C., & Alves, A. C. e. a. (2022). Klebsiella-induced infections in domestic species: A case-series study in 697 animals (1997-2019). Braz J Microbiol, https://doi.org/10.1007/s42770-021-00667-0 Riley, L. W. (2020). Extraintestinal foodborne pathogens. Annu Rev Food Sci Technol, 11, 275–294. https://doi.org/10.1146/annurev-food-032519-051618 Rodrigues, M. X., Yang, Y. Q., Meira, E. B. D., Silva, J. D., & Bicalho, R. C. (2020). Development and evaluation of a new recombinant protein vaccine (YidR) against Klebsiella pneumoniae infection. Vaccine, 38(29), 4640–4648. https://doi.org/10.1016/j.vaccine.2020.03.057 Rodriguez, B. V., & Kuehn, M. J. (2020). Staphylococcus aureus secretes immunomodulatory RNA and DNA via membrane vesicles. Science Reports, 10(1), 18293. https://doi.org/10.1038/s41598-020-75108-3 Rompikuntal, P. K., Thay, B., Khan, M. K., Alanko, J., Penttinen, A. M., Asikainen, S., Wai, S. N., & Oscarsson, J. (2012). Perinuclear localization of internalized outer membrane vesicles carrying active cytolethal distending toxin from Aggregatibacter actinomycetemcomitans. Infection and Immunity, 80(1), 31–42. https://doi.org/10.1128/IAI.06069-11 Russo, T. A., & Marr, C. M. (2019). Hypervirulent Klebsiella pneumoniae. Clinical Microbiology Reviews, 32(3), https://doi.org/10.1128/CMR.00001-19 Russo, T. A., Olson, R., Fang, C. T., Stoesser, N., Miller, M., MacDonald, U., Hutson, A., Barker, J. H., La Hoz, R. M., & Johnson, J. R. (2018). Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K-pneumoniae. Journal of Clinical Microbiology, 56(9), https://doi.org/10.1128/JCM.00776-18 Schukken, Y., Chuff, M., Moroni, P., Gurjar, A., Santisteban, C., Welcome, F., & Zadoks, R. (2012). The "Other" Gram-negative bacteria in mastitis Klebsiella, Serratia, and more. Veterinary Clinics of North America-Food Animal Practice, 28(2), 239-+. https://doi.org/10.1016/j.cvfa.2012.04.001 Schwechheimer, C., & Kuehn, M. J. (2015). Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nature Reviews Microbiology, 13(10), 605–619. https://doi.org/10.1038/nrmicro3525 Shon, A. S., Bajwa, R. P., & Russo, T. A. (2013). Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: A new and dangerous breed. Virulence, 4(2), 107–118. https://doi.org/10.4161/viru.22718 Solgi, H., Shahcheraghi, F., Bolourchi, N., & Ahmadi, A. (2020). Molecular characterization of carbapenem-resistant serotype K1 hypervirulent Klebsiella pneumoniae ST11 harbouring bla(NDM-1) and bla(OXA-48) carbapenemases in Iran. Microbial Pathogenesis, 149, https://doi.org/10.1016/j.micpath.2020.104507 Toyofuku, M., Nomura, N., & Eberl, L. (2019). Types and origins of bacterial membrane vesicles. Nature Reviews Microbiology, 17(1), 13–24. https://doi.org/10.1038/s41579-018-0112-2 Wang, H., Min, C., Li, J., Yu, T., Hu, Y., Dou, Q., & Zou, M. (2021). Characterization of fosfomycin resistance and molecular epidemiology among carbapenem-resistant Klebsiella pneumoniae strains from two tertiary hospitals in China. Bmc Microbiology, 21(1), 109. https://doi.org/10.1186/s12866-021-02165-7 Wang, M., Jiang, M., Wang, Z., Chen, R., Zhuge, X., & Dai, J. (2021). Characterization of antimicrobial resistance in chicken-source phylogroup F Escherichia coli: Similar populations and resistance spectrums between E. coli recovered from chicken colibacillosis tissues and retail raw meats in Eastern China. Poultry Science, 100(9), 101370. https://doi.org/10.1016/j.psj.2021.101370 Wang, Q., Wang, X., Wang, J., Ouyang, P., Jin, C., Wang, R., Zhang, Y., Jin, L., Chen, H., Wang, Z., Zhang, F., Cao, B., Xie, L., Liao, K., Gu, B., Yang, C., Liu, Z., Ma, X., Jin, L., … Wang, H. (2018). Phenotypic and genotypic characterization of carbapenem-resistant Enterobacteriaceae: Data from a longitudinal large-scale CRE study in China (2012-2016). Clinical Infectious Diseases, 67(suppl_2), S196–S205. https://doi.org/10.1093/cid/ciy660 Wang, T. C., Lin, J. C., Chang, J. C., Hiaso, Y. W., Wang, C. H., Chiu, S., Fung, C. P., Chang, F. Y., & Siu, L. K. (2021). Virulence among different types of hypervirulent Klebsiella pneumoniae with multi-locus sequence type (MLST)-11, Serotype K1 or K2 strains. Gut Pathogens, 13(1), https://doi.org/10.1186/s13099-021-00439-z Xu, J., Zhang, N., Luo, M., Wang, M., Wang, L., Li, J., Li, Z., Zhao, H., Li, Z., Kan, B., & Lu, X. (2021). Rapid identification of plasmid replicon type and coexisting plasmid-borne antimicrobial resistance genes by S1-pulsed-field gel electrophoresis-droplet digital polymerase chain reaction. Foodborne Pathog Dis, 18(5), 298–305. https://doi.org/10.1089/fpd.2020.2865 Yang, Y., Peng, Y., Jiang, J., Gong, Z., Zhu, H., Wang, K., Zhou, Q., Tian, Y., Qin, A., Yang, Z., & Shang, S. (2021). Isolation and characterization of multidrug-resistant Klebsiella pneumoniae from raw cow milk in Jiangsu and Shandong provinces, China. Transbound Emerg Dis, 68(3), 1033–1039. https://doi.org/10.1111/tbed.13787 Yao, H., Qin, S. S., Chen, S., Shen, J. Z., & Du, X. D. (2018). Emergence of carbapenem-resistant hypervirulent Klebsiella pneumoniae. Lancet Infectious Diseases, 18(1), 25–25. https://doi.org/10.1016/S1473-3099(17)30628-X Ye, M., Tu, J., Jiang, J., Bi, Y., You, W., Zhang, Y., Ren, J., Zhu, T., Cao, Z., Yu, Z., Shao, C., Shen, Z., Ding, B., Yuan, J., Zhao, X., Guo, Q., Xu, X., Huang, J., & Wang, M. (2016). Clinical and genomic analysis of liver abscess-causing Klebsiella pneumoniae identifies new liver abscess-associated virulence genes. Front Cell Infect Microbiol, 6, 165. https://doi.org/10.3389/fcimb.2016.00165 Yu, W. L., Ko, W. C., Cheng, K. C., Lee, C. C., Lai, C. C., & Chuang, Y. C. (2008). Comparison of prevalence of virulence factors for Klebsiella pneumoniae liver abscesses between isolates with capsular K1/K2 and non-K1/K2 serotypes. Diagnostic Microbiology and Infectious Disease, 62(1), 1–6. https://doi.org/10.1016/j.diagmicrobio.2008.04.007 Zhang, Y., Jin, L., Ouyang, P., Wang, Q., Wang, R., Wang, J., Gao, H., Wang, X., & Wang, H., & China Carbapenem-Resistant Enterobacteriaceae, N. (2020). Evolution of hypervirulence in carbapenem-resistant Klebsiella pneumoniae in China: A multicentre, molecular epidemiological analysis. Journal of Antimicrobial Chemotherapy, 75(2), 327–336. https://doi.org/10.1093/jac/dkz446 Volume69, Issue5September 2022Pages e2661-e2676 ReferencesRelatedInformation