Cross-Tissue Analysis Using Machine Learning to Identify Novel Biomarkers for Knee Osteoarthritis

生物标志物 骨关节炎 小桶 逻辑回归 计算生物学 疾病 基因 生物信息学 医学 基因表达 肿瘤科 生物 病理 基因本体论 内科学 遗传学 替代医学
作者
Yudong Zhao,Xia Yu,Gaoyan Kuang,Ji-hui Cao,Shen Fu,Zhu Ming-shuang
出处
期刊:Computational and Mathematical Methods in Medicine [Hindawi Publishing Corporation]
卷期号:2022: 1-21 被引量:1
标识
DOI:10.1155/2022/9043300
摘要

Knee osteoarthritis (KOA) is a common degenerative joint disease. In this study, we aimed to identify new biomarkers of KOA to improve the accuracy of diagnosis and treatment.GSE98918 and GSE51588 were downloaded from the Gene Expression Omnibus database as training sets, with a total of 74 samples. Gene differences were analyzed by Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and Disease Ontology enrichment analyses for the differentially expressed genes (DEGs), and GSEA enrichment analysis was carried out for the training gene set. Through least absolute shrinkage and selection operator regression analysis, the support vector machine recursive feature elimination algorithm, and gene expression screening, the range of DEGs was further reduced. Immune infiltration analysis was carried out, and the prediction results of the combined biomarker logistic regression model were verified with GSE55457.In total, 84 DEGs were identified through differential gene expression analysis. The five biomarkers that were screened further showed significant differences in cartilage, subchondral bone, and synovial tissue. The diagnostic accuracy of the model synthesized using five biomarkers through logistic regression was better than that of a single biomarker and significantly better than that of a single clinical trait.CX3CR1, SLC7A5, ARL4C, TLR7, and MTHFD2 might be used as novel biomarkers to improve the accuracy of KOA disease diagnosis, monitor disease progression, and improve the efficacy of clinical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
习习完成签到 ,获得积分10
刚刚
bkagyin应助熊猫海采纳,获得10
1秒前
1秒前
孤独的问凝完成签到,获得积分10
2秒前
不想懂得完成签到 ,获得积分10
2秒前
王小杰完成签到 ,获得积分10
2秒前
Orange应助顺利南珍采纳,获得30
3秒前
MYYY发布了新的文献求助10
4秒前
景明关注了科研通微信公众号
4秒前
6秒前
个性源智完成签到,获得积分10
6秒前
8秒前
单纯的爆米花完成签到,获得积分10
9秒前
禾叶完成签到 ,获得积分10
9秒前
嘿嘿完成签到,获得积分10
10秒前
1111发布了新的文献求助10
12秒前
12秒前
lzh完成签到 ,获得积分20
13秒前
16秒前
王王完成签到,获得积分10
17秒前
18秒前
19秒前
顺利南珍发布了新的文献求助30
19秒前
redamancy完成签到 ,获得积分10
19秒前
狗蛋发布了新的文献求助10
21秒前
充电宝应助个性源智采纳,获得10
23秒前
guozizi发布了新的文献求助30
23秒前
暴躁的沛柔完成签到,获得积分10
23秒前
23秒前
24秒前
26秒前
顺利南珍完成签到,获得积分10
26秒前
28秒前
28秒前
7676发布了新的文献求助30
30秒前
慕青应助Rowena采纳,获得10
30秒前
积极立轩发布了新的文献求助10
31秒前
同行完成签到 ,获得积分10
31秒前
景明发布了新的文献求助10
31秒前
Orange应助guozizi采纳,获得30
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306329
求助须知:如何正确求助?哪些是违规求助? 4452151
关于积分的说明 13853931
捐赠科研通 4339635
什么是DOI,文献DOI怎么找? 2382737
邀请新用户注册赠送积分活动 1377636
关于科研通互助平台的介绍 1345265