LRFNet: A deep learning model for the assessment of liver reserve function based on Child‐Pugh score and CT image

医学 人工智能 肝功能 规范化(社会学) 深度学习 肝癌 计算机科学 放射科 肝细胞癌 模式识别(心理学) 机器学习 内科学 人类学 社会学
作者
Zhiwei Huang,Guo Zhang,Jiong Liu,Mengping Huang,Lisha Zhong,Jian Shu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:223: 106993-106993 被引量:9
标识
DOI:10.1016/j.cmpb.2022.106993
摘要

Liver reserve function should be accurately evaluated in patients with hepatic cellular cancer before surgery to evaluate the degree of liver tolerance to surgical methods. Meanwhile, liver reserve function is also an important indicator for disease analysis and prognosis of patients. Child-Pugh score is the most widely used liver reserve function evaluation and scoring system. However, this method also has many shortcomings such as poor accuracy and subjective factors. To achieve comprehensive evaluation of liver reserve function, we developed a deep learning model to fuse bimodal features of Child-Pugh score and computed tomography (CT) image.1022 enhanced abdomen CT images of 121 patients with hepatocellular carcinoma and impaired liver reserve function were retrospectively collected. Firstly, CT images were pre-processed by de-noising, data amplification and normalization. Then, new branches were added between the dense blocks of the DenseNet structure, and the center clipping operation was introduced to obtain a lightweight deep learning model liver reserve function network (LRFNet) with rich liver scale features. LRFNet extracted depth features related to liver reserve function from CT images. Finally, the extracted features are input into a deep learning classifier composed of fully connected layers to classify CT images into Child-Pugh A, B and C. Precision, Specificity, Sensitivity, and Area Under Curve are used to evaluate the performance of the model.The AUC by our LRFNet model based on CT image for Child-Pugh A, B and C classification of liver reserve function was 0.834, 0.649 and 0.876, respectively, and with an average AUC of 0.774, which was better than the traditional clinical subjective Child-Pugh classification method.Deep learning model based on CT images can accurately classify Child-Pugh grade of liver reserve function in hepatocellular carcinoma patients, provide a comprehensive method for clinicians to assess liver reserve function before surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏威夷果原味完成签到 ,获得积分10
1秒前
1秒前
打打应助王乾伟采纳,获得10
2秒前
斯文梦寒完成签到 ,获得积分10
3秒前
雅哈发布了新的文献求助10
3秒前
吴茂林发布了新的文献求助10
4秒前
张杰完成签到,获得积分10
4秒前
顾矜应助ubiqutin采纳,获得10
5秒前
6秒前
完美世界应助maolao采纳,获得20
7秒前
nice1537发布了新的文献求助10
8秒前
脑洞疼应助眼睛大的碧凡采纳,获得10
9秒前
慕青应助Ma采纳,获得10
9秒前
9秒前
10秒前
深情安青应助victor采纳,获得10
10秒前
10秒前
11秒前
11秒前
Nnnky发布了新的文献求助10
11秒前
ykcul完成签到 ,获得积分10
12秒前
13秒前
ubiqutin完成签到,获得积分20
13秒前
阔达书雪发布了新的文献求助10
14秒前
今后应助炙热的荔枝采纳,获得10
14秒前
赘婿应助JJ采纳,获得10
15秒前
ubiqutin发布了新的文献求助10
16秒前
平淡惋清发布了新的文献求助10
16秒前
在水一方应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
Owen应助科研通管家采纳,获得10
17秒前
李爱国应助科研通管家采纳,获得10
17秒前
CipherSage应助科研通管家采纳,获得10
18秒前
LB应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
所所应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5290205
求助须知:如何正确求助?哪些是违规求助? 4441629
关于积分的说明 13827865
捐赠科研通 4324246
什么是DOI,文献DOI怎么找? 2373588
邀请新用户注册赠送积分活动 1368953
关于科研通互助平台的介绍 1332922