亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LRFNet: A deep learning model for the assessment of liver reserve function based on Child‐Pugh score and CT image

医学 人工智能 肝功能 规范化(社会学) 深度学习 肝癌 计算机科学 放射科 肝细胞癌 模式识别(心理学) 机器学习 内科学 人类学 社会学
作者
Zhiwei Huang,Guo Zhang,Jiong Liu,Mengping Huang,Lisha Zhong,Jiwu Shu
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:223: 106993-106993 被引量:2
标识
DOI:10.1016/j.cmpb.2022.106993
摘要

Liver reserve function should be accurately evaluated in patients with hepatic cellular cancer before surgery to evaluate the degree of liver tolerance to surgical methods. Meanwhile, liver reserve function is also an important indicator for disease analysis and prognosis of patients. Child-Pugh score is the most widely used liver reserve function evaluation and scoring system. However, this method also has many shortcomings such as poor accuracy and subjective factors. To achieve comprehensive evaluation of liver reserve function, we developed a deep learning model to fuse bimodal features of Child-Pugh score and computed tomography (CT) image.1022 enhanced abdomen CT images of 121 patients with hepatocellular carcinoma and impaired liver reserve function were retrospectively collected. Firstly, CT images were pre-processed by de-noising, data amplification and normalization. Then, new branches were added between the dense blocks of the DenseNet structure, and the center clipping operation was introduced to obtain a lightweight deep learning model liver reserve function network (LRFNet) with rich liver scale features. LRFNet extracted depth features related to liver reserve function from CT images. Finally, the extracted features are input into a deep learning classifier composed of fully connected layers to classify CT images into Child-Pugh A, B and C. Precision, Specificity, Sensitivity, and Area Under Curve are used to evaluate the performance of the model.The AUC by our LRFNet model based on CT image for Child-Pugh A, B and C classification of liver reserve function was 0.834, 0.649 and 0.876, respectively, and with an average AUC of 0.774, which was better than the traditional clinical subjective Child-Pugh classification method.Deep learning model based on CT images can accurately classify Child-Pugh grade of liver reserve function in hepatocellular carcinoma patients, provide a comprehensive method for clinicians to assess liver reserve function before surgery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
可爱的函函应助Panda2022采纳,获得10
11秒前
DDL完成签到,获得积分10
12秒前
伊笙完成签到 ,获得积分10
13秒前
DDL发布了新的文献求助10
14秒前
hugeyoung完成签到,获得积分10
31秒前
春天的粥完成签到 ,获得积分10
40秒前
研友_LBRPOL完成签到 ,获得积分10
55秒前
1分钟前
英勇的半兰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
华仔应助科研通管家采纳,获得30
1分钟前
研友_VZG7GZ应助科研通管家采纳,获得10
1分钟前
1分钟前
慕青应助强仔爱写文章采纳,获得10
1分钟前
Sean完成签到 ,获得积分10
2分钟前
CipherSage应助22myzhang2采纳,获得10
2分钟前
慕青应助Lipeng采纳,获得10
2分钟前
2分钟前
体贴的小susu完成签到,获得积分10
2分钟前
22myzhang2发布了新的文献求助10
3分钟前
3分钟前
boxodo发布了新的文献求助40
3分钟前
义气雁完成签到 ,获得积分10
3分钟前
jyy应助科研通管家采纳,获得10
3分钟前
4分钟前
Dannnn发布了新的文献求助10
4分钟前
4分钟前
Lipeng发布了新的文献求助10
4分钟前
meow完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI2S应助感动白开水采纳,获得10
4分钟前
豆豆发布了新的文献求助10
5分钟前
感动白开水完成签到,获得积分10
5分钟前
万能图书馆应助bzg采纳,获得10
5分钟前
努力的淼淼完成签到 ,获得积分10
5分钟前
球球子完成签到,获得积分10
5分钟前
5分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777597
求助须知:如何正确求助?哪些是违规求助? 3322969
关于积分的说明 10212752
捐赠科研通 3038301
什么是DOI,文献DOI怎么找? 1667298
邀请新用户注册赠送积分活动 798103
科研通“疑难数据库(出版商)”最低求助积分说明 758215