Short-term load forecasting based on LSTM networks considering attention mechanism

计算机科学 概率逻辑 概率预测 特征选择 特征(语言学) 一般化 数据挖掘 期限(时间) 电力系统 人工智能 机器学习 功率(物理) 工程类 物理 数学 电气工程 数学分析 哲学 量子力学 语言学
作者
Jun Lin,Jin Ma,Jianguo Zhu,Yu Cui
出处
期刊:International Journal of Electrical Power & Energy Systems [Elsevier BV]
卷期号:137: 107818-107818 被引量:218
标识
DOI:10.1016/j.ijepes.2021.107818
摘要

• Considering feature correlation and temporal dependencies by an attention based LSTM network. • Effects of exogenous parameters on the prediction accuracy are quantified. • Selecting which and how many weather station data for zonal load forecasting. Reliable and accurate zonal electricity load forecasting is essential for power system operation and planning. Probabilistic load forecasts can present more comprehensive information for decision-making processes by quantifying the uncertainties of the electric load. A suitable feature selection is a critical step in forecasting, especially for data-driven methods. Weather conditions are another major factor related to electricity demand and play an important role in load forecasting. In this paper, we propose a dual-stage attention based long short-term memory (LSTM) network for short-term zonal load probabilistic forecasting. In the first stage, a feature attention based encoder is built to calculate the correlation of input features with electricity load at each time step. The most relevant input features can be adaptively selected. In the second stage, a temporal attention based decoder is developed to mine the time dependencies. Then, an LSTM model integrates these attention results and the probabilistic forecasts can be obtained using a pinball loss function. We also discuss how the proposed method can be utilized for feature and weather station selection. The effectiveness of the proposed method for both point and probabilistic forecasting is adequately verified on an open dataset of GEFCom2014, showing higher accuracy and generalization ability over other state-of-the-art forecasting models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小小阿杰发布了新的文献求助10
刚刚
刚刚
顾矜应助科研狗采纳,获得10
刚刚
Wang1991发布了新的文献求助10
刚刚
自信书文完成签到 ,获得积分10
1秒前
鹿飞飞发布了新的文献求助10
1秒前
qzp发布了新的文献求助10
1秒前
Owen应助哭泣又柔采纳,获得10
2秒前
2秒前
3秒前
阿婧发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助10
3秒前
李健应助A_K采纳,获得10
3秒前
3秒前
Hello应助威武的匕采纳,获得10
3秒前
3秒前
4秒前
科研通AI6应助小鱼儿采纳,获得10
5秒前
5秒前
tdtk发布了新的文献求助10
5秒前
儒雅从筠完成签到,获得积分10
6秒前
Myprince发布了新的文献求助10
6秒前
7秒前
7秒前
小小阿杰完成签到,获得积分10
7秒前
Zjj完成签到,获得积分20
8秒前
zt完成签到,获得积分10
8秒前
江夏清完成签到,获得积分10
8秒前
追风发布了新的文献求助10
9秒前
9秒前
9秒前
123发布了新的文献求助10
10秒前
11秒前
小沈小沈完成签到,获得积分10
11秒前
指已成殇应助ylly冰淇淋采纳,获得10
11秒前
13秒前
Mine发布了新的文献求助10
13秒前
Zjj发布了新的文献求助50
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Signals, Systems, and Signal Processing 400
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4620309
求助须知:如何正确求助?哪些是违规求助? 4021696
关于积分的说明 12450310
捐赠科研通 3705738
什么是DOI,文献DOI怎么找? 2043714
邀请新用户注册赠送积分活动 1076057
科研通“疑难数据库(出版商)”最低求助积分说明 959054