Machine-Learning Score Using Stress CMR for Death Prediction in Patients With Suspected or Known CAD

医学 弗雷明翰风险评分 冠状动脉疾病 内科学 队列 回顾性队列研究 磁共振成像 心脏病学 放射科 疾病
作者
Théo Pezel,Francesca Sanguineti,Philippe Garot,Thierry Unterseeh,Stéphane Champagne,Solenn Toupin,Stéphane Morisset,Thomas Hovasse,Alyssa Faradji,Tania Ah-Sing,Martin Nicol,Lounis Hamzi,Jean Guillaume Dillinger,Patrick Henry,V. Bousson,Jérôme Garot
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:15 (11): 1900-1913 被引量:17
标识
DOI:10.1016/j.jcmg.2022.05.007
摘要

In patients with suspected or known coronary artery disease, traditional prognostic risk assessment is based on a limited selection of clinical and imaging findings. Machine learning (ML) methods can take into account a greater number and complexity of variables.This study sought to investigate the feasibility and accuracy of ML using stress cardiac magnetic resonance (CMR) and clinical data to predict 10-year all-cause mortality in patients with suspected or known coronary artery disease, and compared its performance with existing clinical or CMR scores.Between 2008 and 2018, a retrospective cohort study with a median follow-up of 6.0 (IQR: 5.0-8.0) years included all consecutive patients referred for stress CMR. Twenty-three clinical and 11 stress CMR parameters were evaluated. ML involved automated feature selection by random survival forest, model building with a multiple fractional polynomial algorithm, and 5 repetitions of 10-fold stratified cross-validation. The primary outcome was all-cause death based on the electronic National Death Registry. The external validation cohort of the ML score was performed in another center.Of 31,752 consecutive patients (mean age: 63.7 ± 12.1 years, and 65.7% male), 2,679 (8.4%) died with 206,453 patient-years of follow-up. The ML score (ranging from 0 to 10 points) exhibited a higher area under the curve compared with Clinical and Stress Cardiac Magnetic Resonance score, European Systematic Coronary Risk Estimation score, QRISK3 score, Framingham Risk Score, and stress CMR data alone for prediction of 10-year all-cause mortality (ML score: 0.76 vs Clinical and Stress Cardiac Magnetic Resonance score: 0.68, European Systematic Coronary Risk Estimation score: 0.66, QRISK3 score: 0.64, Framingham Risk Score: 0.63, extent of inducible ischemia: 0.66, extent of late gadolinium enhancement: 0.65; all P < 0.001). The ML score also exhibited a good area under the curve in the external cohort (0.75).The ML score including clinical and stress CMR data exhibited a higher prognostic value to predict 10-year death compared with all traditional clinical or CMR scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lijunlhc完成签到,获得积分10
1秒前
2秒前
研友_8Raw2Z发布了新的文献求助10
2秒前
2秒前
高兴吐司完成签到,获得积分10
2秒前
SimonHHH发布了新的文献求助10
4秒前
kmkz发布了新的文献求助10
4秒前
4秒前
阿盛发布了新的文献求助10
5秒前
5秒前
背后思卉发布了新的文献求助10
6秒前
6秒前
6秒前
tao发布了新的文献求助10
6秒前
Khalifa完成签到,获得积分10
6秒前
6秒前
柳煜城发布了新的文献求助10
7秒前
8秒前
8秒前
Mayday完成签到,获得积分10
8秒前
liutongshun完成签到,获得积分20
9秒前
研友_8Raw2Z完成签到,获得积分10
9秒前
10秒前
11秒前
MuMu发布了新的文献求助10
11秒前
DPmmm发布了新的文献求助10
12秒前
liutongshun发布了新的文献求助10
12秒前
雪白妙之发布了新的文献求助20
12秒前
不一完成签到,获得积分10
12秒前
动听的靖琪完成签到,获得积分10
13秒前
h7nho发布了新的文献求助10
13秒前
13秒前
怡zyt发布了新的文献求助10
13秒前
Li发布了新的文献求助10
14秒前
随风而动123完成签到,获得积分10
14秒前
Lalala发布了新的文献求助10
15秒前
LI完成签到 ,获得积分10
16秒前
无端发布了新的文献求助10
16秒前
赘婿应助无语的鱼采纳,获得10
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4747062
求助须知:如何正确求助?哪些是违规求助? 4094358
关于积分的说明 12667320
捐赠科研通 3806339
什么是DOI,文献DOI怎么找? 2101390
邀请新用户注册赠送积分活动 1126726
关于科研通互助平台的介绍 1003298