Machine-Learning Score Using Stress CMR for Death Prediction in Patients With Suspected or Known CAD

医学 弗雷明翰风险评分 冠状动脉疾病 内科学 队列 回顾性队列研究 磁共振成像 心脏病学 放射科 疾病
作者
Théo Pezel,Francesca Sanguineti,Philippe Garot,Thierry Unterseeh,Stéphane Champagne,Solenn Toupin,Stéphane Morisset,Thomas Hovasse,Alyssa Faradji,Tania Ah-Sing,Martin Nicol,Lounis Hamzi,Jean Guillaume Dillinger,Patrick Henry,V. Bousson,Jérôme Garot
出处
期刊:Jacc-cardiovascular Imaging [Elsevier BV]
卷期号:15 (11): 1900-1913 被引量:17
标识
DOI:10.1016/j.jcmg.2022.05.007
摘要

In patients with suspected or known coronary artery disease, traditional prognostic risk assessment is based on a limited selection of clinical and imaging findings. Machine learning (ML) methods can take into account a greater number and complexity of variables.This study sought to investigate the feasibility and accuracy of ML using stress cardiac magnetic resonance (CMR) and clinical data to predict 10-year all-cause mortality in patients with suspected or known coronary artery disease, and compared its performance with existing clinical or CMR scores.Between 2008 and 2018, a retrospective cohort study with a median follow-up of 6.0 (IQR: 5.0-8.0) years included all consecutive patients referred for stress CMR. Twenty-three clinical and 11 stress CMR parameters were evaluated. ML involved automated feature selection by random survival forest, model building with a multiple fractional polynomial algorithm, and 5 repetitions of 10-fold stratified cross-validation. The primary outcome was all-cause death based on the electronic National Death Registry. The external validation cohort of the ML score was performed in another center.Of 31,752 consecutive patients (mean age: 63.7 ± 12.1 years, and 65.7% male), 2,679 (8.4%) died with 206,453 patient-years of follow-up. The ML score (ranging from 0 to 10 points) exhibited a higher area under the curve compared with Clinical and Stress Cardiac Magnetic Resonance score, European Systematic Coronary Risk Estimation score, QRISK3 score, Framingham Risk Score, and stress CMR data alone for prediction of 10-year all-cause mortality (ML score: 0.76 vs Clinical and Stress Cardiac Magnetic Resonance score: 0.68, European Systematic Coronary Risk Estimation score: 0.66, QRISK3 score: 0.64, Framingham Risk Score: 0.63, extent of inducible ischemia: 0.66, extent of late gadolinium enhancement: 0.65; all P < 0.001). The ML score also exhibited a good area under the curve in the external cohort (0.75).The ML score including clinical and stress CMR data exhibited a higher prognostic value to predict 10-year death compared with all traditional clinical or CMR scores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助ZW采纳,获得10
5秒前
落寞的八宝粥完成签到,获得积分10
6秒前
完美世界应助rrrrlc采纳,获得10
12秒前
zds233完成签到,获得积分10
14秒前
福尔摩环完成签到 ,获得积分10
15秒前
正直的广缘完成签到 ,获得积分10
15秒前
粱三问完成签到 ,获得积分10
16秒前
kate完成签到,获得积分10
18秒前
22秒前
wanci应助zcl采纳,获得10
22秒前
彭于晏应助忧郁老默采纳,获得10
22秒前
老神在在完成签到,获得积分10
26秒前
脑洞疼应助dt采纳,获得10
28秒前
29秒前
29秒前
29秒前
现代书雪完成签到,获得积分20
30秒前
可靠豌豆完成签到,获得积分10
30秒前
32秒前
SciGPT应助osel采纳,获得10
33秒前
zcl发布了新的文献求助10
33秒前
打打应助hahhha采纳,获得10
34秒前
BUCI发布了新的文献求助10
34秒前
ZJ完成签到,获得积分10
36秒前
kdc完成签到,获得积分10
39秒前
Lucas应助WANG采纳,获得20
40秒前
HTniconico完成签到 ,获得积分10
43秒前
46秒前
rcrc111发布了新的文献求助10
50秒前
53秒前
54秒前
55秒前
dt发布了新的文献求助10
58秒前
摇光完成签到,获得积分10
59秒前
HiNDT发布了新的文献求助10
59秒前
Owen应助cookie486采纳,获得10
1分钟前
1分钟前
胡图图完成签到,获得积分10
1分钟前
1分钟前
Ava应助罗小罗同学采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776905
求助须知:如何正确求助?哪些是违规求助? 3322325
关于积分的说明 10209713
捐赠科研通 3037674
什么是DOI,文献DOI怎么找? 1666792
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757984