相关性(法律)
计算机科学
数学教育
研究生
工程伦理学
工程类
心理学
教育学
政治学
法学
出处
期刊:Cornell University - arXiv
日期:2021-01-01
被引量:1
标识
DOI:10.48550/arxiv.2108.08313
摘要
This paper summarizes some challenges encountered and best practices established in several years of teaching Machine Learning for the Physical Sciences at the undergraduate and graduate level. I discuss motivations for teaching ML to physicists, desirable properties of pedagogical materials, such as accessibility, relevance, and likeness to real-world research problems, and give examples of components of teaching units.
科研通智能强力驱动
Strongly Powered by AbleSci AI