已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Prediction of the trajectories of depressive symptoms among children in the adolescent brain cognitive development (ABCD) study using machine learning approach

心理学 认知 大脑发育 发展心理学 抑郁症状 临床心理学 精神科 神经科学
作者
Xiang Qu,Kai Chen,Li Peng,Jiawei Luo,Jingwen Jiang,Yang Chen,Lan Lan,Huan Song,Xiaobo Zhou
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:310: 162-171 被引量:26
标识
DOI:10.1016/j.jad.2022.05.020
摘要

Depression often first emerges during adolescence and evidence shows that the long-term patterns of depressive symptoms over time are heterogeneous. It is meaningful to predict the trajectory of depressive symptoms in adolescents to find early intervention targets.Based on the Adolescent Brain Cognitive Development Study, we included 4962 participants aged 9-10 who were followed-up for 2 years. Trajectories of depressive symptoms were identified by Latent Class Growth Analyses (LCGA). Four types of machine learning models were built to predict the identified trajectories and to obtain variables with predictive value based on the best performance model.Of all participants, 536 (10.80%) were classified as increasing, 269 (5.42%) as persistently high, 433 (8.73%) as decreasing, and 3724 (75.05%) as persistently low by LCGA. Gradient Boosting Machine (GBM) model got the highest discriminant performance. Sleep quality, parental emotional state and family financial adversities were the most important predictors and three resting state functional magnetic resonance imaging functional connectivity data were also helpful to distinguish trajectories.We only have depressive symptom scores at three time points. Some valuable predictors are not specific to depression. External validation is an important next step. These predictors should not be interpreted as etiology and some variables were reported by parents/caregivers.Using GBM combined with baseline characteristics, the trajectories of depressive symptoms with two years among adolescents aged 9-10 years can be well predicted, which might further facilitate the identification of adolescents at high risk of depressive symptoms and development of effective early interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助Lynn采纳,获得20
刚刚
1秒前
1秒前
1秒前
852应助yue采纳,获得10
2秒前
浮游应助懵懂的南珍采纳,获得10
2秒前
3秒前
爆米花应助大力的康乃馨采纳,获得10
3秒前
美好向日葵完成签到,获得积分10
4秒前
xinxu发布了新的文献求助10
5秒前
Sylas发布了新的文献求助10
5秒前
6秒前
wwwhhhccc完成签到,获得积分10
7秒前
7秒前
7秒前
哈哈哈哈完成签到,获得积分20
8秒前
gwind发布了新的文献求助10
8秒前
10秒前
在水一方应助何丽雅采纳,获得10
10秒前
11秒前
只只完成签到,获得积分10
11秒前
星柒发布了新的文献求助10
12秒前
豆豆欢欢乐完成签到,获得积分10
12秒前
万尧完成签到,获得积分20
14秒前
沏碗麻花完成签到,获得积分20
14秒前
Charlie_dolphin完成签到,获得积分10
15秒前
dick_zhang完成签到,获得积分10
16秒前
踏实雨发布了新的文献求助20
16秒前
16秒前
哲别发布了新的文献求助10
16秒前
好眠哈密瓜完成签到 ,获得积分10
18秒前
开朗煎饼完成签到 ,获得积分10
18秒前
小七发布了新的文献求助10
19秒前
21秒前
23秒前
24秒前
今后应助熹微采纳,获得10
24秒前
25秒前
xinxu关注了科研通微信公众号
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5401093
求助须知:如何正确求助?哪些是违规求助? 4520125
关于积分的说明 14078325
捐赠科研通 4432996
什么是DOI,文献DOI怎么找? 2433973
邀请新用户注册赠送积分活动 1426138
关于科研通互助平台的介绍 1404738