Data-Driven Dynamic Pricing and Ordering with Perishable Inventory in a Changing Environment

易腐性 后悔 非参数统计 动态定价 背景(考古学) 计算机科学 参数统计 计量经济学 经济 运筹学 微观经济学 数学 业务 营销 统计 机器学习 古生物学 生物
作者
N. Bora Keskin,Yuexing Li,Jing‐Sheng Song
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (3): 1938-1958 被引量:47
标识
DOI:10.1287/mnsc.2021.4011
摘要

We consider a retailer that sells a perishable product, making joint pricing and inventory ordering decisions over a finite time horizon of T periods with lost sales. Exploring a real-life data set from a leading supermarket chain, we identify several distinctive challenges faced by such a retailer that have not been jointly studied in the literature: the retailer does not have perfect information on (1) the demand-price relationship, (2) the demand noise distribution, (3) the inventory perishability rate, and (4) how the demand-price relationship changes over time. Furthermore, the demand noise distribution is nonparametric for some products but parametric for others. To tackle these challenges, we design two types of data-driven pricing and ordering (DDPO) policies for the cases of nonparametric and parametric noise distributions. Measuring performance by regret, that is, the profit loss caused by not knowing (1)–(4), we prove that the T-period regret of our DDPO policies are in the order of [Formula: see text] and [Formula: see text] in the cases of nonparametric and parametric noise distributions, respectively. These are the best achievable growth rates of regret in these settings (up to logarithmic terms). Implementing our policies in the context of the aforementioned real-life data set, we show that our approach significantly outperforms the historical decisions made by the supermarket chain. Moreover, we characterize parameter regimes that quantify the relative significance of the changing environment and product perishability. Finally, we extend our model to allow for age-dependent perishability and demand censoring and modify our policies to address these issues. This paper was accepted by David Simchi-Levi, Management Science Special Section on Data-Driven Prescriptive Analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
后来应助LaTeXer采纳,获得10
1秒前
爆米花应助einspringen采纳,获得10
1秒前
bkagyin应助啦啦啦啦啦采纳,获得10
1秒前
Knight发布了新的文献求助10
3秒前
HDM完成签到,获得积分10
3秒前
dake完成签到,获得积分10
4秒前
4秒前
5秒前
CipherSage应助hivivian采纳,获得10
5秒前
nadeem完成签到 ,获得积分10
7秒前
7秒前
binz完成签到,获得积分10
7秒前
9秒前
10秒前
MoriZhang完成签到,获得积分10
11秒前
mojio应助真实的一鸣采纳,获得10
11秒前
九三完成签到 ,获得积分10
11秒前
无花果应助Knight采纳,获得10
12秒前
科研小破白菜完成签到,获得积分10
12秒前
成就夜柳发布了新的文献求助10
12秒前
123456787899完成签到,获得积分10
15秒前
科研通AI2S应助牙牙采纳,获得10
16秒前
HHXYY完成签到 ,获得积分10
16秒前
hivivian发布了新的文献求助10
17秒前
Unfair完成签到,获得积分10
18秒前
阳光的日记本完成签到,获得积分10
23秒前
牙牙完成签到,获得积分10
26秒前
荷荷巴发布了新的文献求助10
26秒前
27秒前
敏感指甲油关注了科研通微信公众号
31秒前
Orange应助成就夜柳采纳,获得200
31秒前
科研通AI5应助平常寒蕾采纳,获得50
31秒前
李健应助科研兄采纳,获得10
33秒前
霓虹我哄完成签到,获得积分10
33秒前
跑来跳去发布了新的文献求助10
34秒前
科研通AI5应助wwj_kyt采纳,获得10
35秒前
36秒前
斯文鸡完成签到,获得积分10
36秒前
yin完成签到 ,获得积分10
36秒前
38秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805267
求助须知:如何正确求助?哪些是违规求助? 3350231
关于积分的说明 10348060
捐赠科研通 3066150
什么是DOI,文献DOI怎么找? 1683567
邀请新用户注册赠送积分活动 809064
科研通“疑难数据库(出版商)”最低求助积分说明 765214