deepHPI: a comprehensive deep learning platform for accurate prediction and visualization of host–pathogen protein–protein interactions

计算机科学 人工智能 机器学习 寄主(生物学) 病菌 卷积神经网络 计算生物学 生物 生态学 微生物学
作者
Rakesh Kaundal,Cristian D Loaiza,Naveen Duhan,Nicholas Flann
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:23 (3) 被引量:1
标识
DOI:10.1093/bib/bbac125
摘要

Host-pathogen protein interactions (HPPIs) play vital roles in many biological processes and are directly involved in infectious diseases. With the outbreak of more frequent pandemics in the last couple of decades, such as the recent outburst of Covid-19 causing millions of deaths, it has become more critical to develop advanced methods to accurately predict pathogen interactions with their respective hosts. During the last decade, experimental methods to identify HPIs have been used to decipher host-pathogen systems with the caveat that those techniques are labor-intensive, expensive and time-consuming. Alternatively, accurate prediction of HPIs can be performed by the use of data-driven machine learning. To provide a more robust and accurate solution for the HPI prediction problem, we have developed a deepHPI tool based on deep learning. The web server delivers four host-pathogen model types: plant-pathogen, human-bacteria, human-virus and animal-pathogen, leveraging its operability to a wide range of analyses and cases of use. The deepHPI web tool is the first to use convolutional neural network models for HPI prediction. These models have been selected based on a comprehensive evaluation of protein features and neural network architectures. The best prediction models have been tested on independent validation datasets, which achieved an overall Matthews correlation coefficient value of 0.87 for animal-pathogen using the combined pseudo-amino acid composition and conjoint triad (PAAC_CT) features, 0.75 for human-bacteria using the combined pseudo-amino acid composition, conjoint triad and normalized Moreau-Broto feature (PAAC_CT_NMBroto), 0.96 for human-virus using PAAC_CT_NMBroto and 0.94 values for plant-pathogen interactions using the combined pseudo-amino acid composition, composition and transition feature (PAAC_CTDC_CTDT). Our server running deepHPI is deployed on a high-performance computing cluster that enables large and multiple user requests, and it provides more information about interactions discovered. It presents an enriched visualization of the resulting host-pathogen networks that is augmented with external links to various protein annotation resources. We believe that the deepHPI web server will be very useful to researchers, particularly those working on infectious diseases. Additionally, many novel and known host-pathogen systems can be further investigated to significantly advance our understanding of complex disease-causing agents. The developed models are established on a web server, which is freely accessible at http://bioinfo.usu.edu/deepHPI/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
光亮的自行车完成签到 ,获得积分10
2秒前
hanhan完成签到 ,获得积分10
14秒前
彭友俊发布了新的文献求助30
15秒前
善良的一手完成签到 ,获得积分10
19秒前
tengfei完成签到 ,获得积分10
21秒前
哭泣恋风完成签到 ,获得积分10
28秒前
Telomere完成签到 ,获得积分10
32秒前
行云流水完成签到,获得积分10
34秒前
愿景完成签到 ,获得积分10
39秒前
缓慢的冬云完成签到 ,获得积分10
44秒前
miyulong发布了新的文献求助10
57秒前
悲痛宇宙完成签到,获得积分10
1分钟前
青岛彭于晏完成签到 ,获得积分10
1分钟前
哈哈哈完成签到 ,获得积分10
1分钟前
蓝眸完成签到 ,获得积分10
1分钟前
温柔觅松完成签到 ,获得积分10
1分钟前
水晶李完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
bluelemon发布了新的文献求助10
1分钟前
Ha完成签到 ,获得积分10
1分钟前
fanssw完成签到 ,获得积分10
1分钟前
Luke Gee完成签到 ,获得积分10
1分钟前
Tonnyjing应助彭友俊采纳,获得10
1分钟前
仲夏的梦完成签到 ,获得积分10
2分钟前
科研通AI2S应助全鑫采纳,获得10
2分钟前
上善若水呦完成签到 ,获得积分10
2分钟前
请叫我鬼才完成签到,获得积分10
2分钟前
孟寐以求完成签到 ,获得积分10
2分钟前
风笛完成签到 ,获得积分10
2分钟前
gxq19848888完成签到,获得积分20
2分钟前
金生六完成签到 ,获得积分10
2分钟前
王红玉完成签到,获得积分10
2分钟前
Axs完成签到,获得积分10
2分钟前
陈秋发布了新的文献求助10
2分钟前
Ray完成签到 ,获得积分10
2分钟前
kento应助研友_xnEOX8采纳,获得50
2分钟前
小玲子完成签到 ,获得积分10
2分钟前
janer完成签到 ,获得积分10
2分钟前
glanceofwind完成签到 ,获得积分10
2分钟前
Lrh完成签到 ,获得积分10
2分钟前
高分求助中
좌파는 어떻게 좌파가 됐나:한국 급진노동운동의 형성과 궤적 2500
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Cognitive linguistics critical concepts in linguistics 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
氟盐冷却高温堆非能动余热排出性能及安全分析研究 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3052652
求助须知:如何正确求助?哪些是违规求助? 2709874
关于积分的说明 7418267
捐赠科研通 2354446
什么是DOI,文献DOI怎么找? 1246020
科研通“疑难数据库(出版商)”最低求助积分说明 605951
版权声明 595921