Graph representation learning for popularity prediction problem: A survey

人气 计算机科学 分类 人工智能 图形 卷积神经网络 机器学习 病毒式营销 社会化媒体 深度学习 特征学习 嵌入 强化学习 数据科学 文字嵌入 代表(政治) 理论计算机科学 万维网 心理学 政治 社会心理学 法学 政治学
作者
Tiantian Chen,Jianxiong Guo,Weili Wu
出处
期刊:Discrete Mathematics, Algorithms and Applications [World Scientific]
卷期号:14 (07) 被引量:7
标识
DOI:10.1142/s179383092230003x
摘要

The online social platforms, like Twitter, Facebook, LinkedIn and WeChat, have grown really fast in last decade and have been one of the most effective platforms for people to communicate and share information with each other. Due to the "word of mouth" effects, information usually can spread rapidly on these social media platforms. Therefore, it is important to study the mechanisms driving the information diffusion and quantify the consequence of information spread. A lot of efforts have been focused on this problem to help us better understand and achieve higher performance in viral marketing and advertising. On the other hand, the development of neural networks has blossomed in the last few years, leading to a large number of graph representation learning (GRL) models. Compared to traditional models, GRL methods are often shown to be more effective. In this paper, we present a comprehensive review for existing works using GRL methods for popularity prediction problem, and categorize related literatures into two big classes, according to their mainly used model and techniques: embedding-based methods and deep learning methods. Deep learning method is further classified into six small classes: convolutional neural networks, graph convolutional networks, graph attention networks, graph neural networks, recurrent neural networks, and reinforcement learning. We compare the performance of these different models and discuss their strengths and limitations. Finally, we outline the challenges and future chances for popularity prediction problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
哈哈完成签到,获得积分20
4秒前
書架应助月下独酌42采纳,获得10
4秒前
周钰波发布了新的文献求助20
5秒前
笙笙发布了新的文献求助10
8秒前
程勋航完成签到,获得积分10
10秒前
天真千凡关注了科研通微信公众号
13秒前
首席或雪月完成签到,获得积分10
15秒前
16秒前
花开半夏完成签到,获得积分10
17秒前
ccCherub完成签到,获得积分10
19秒前
Pretrial完成签到 ,获得积分10
22秒前
23秒前
23秒前
桃子爱学习完成签到,获得积分10
24秒前
天真千凡发布了新的文献求助10
27秒前
HopeStar完成签到,获得积分10
27秒前
zbc_完成签到,获得积分10
28秒前
科研通AI5应助烂漫的寻冬采纳,获得30
33秒前
Orange应助坦率的傲芙采纳,获得10
37秒前
科研通AI5应助cozy采纳,获得10
37秒前
小二郎应助di采纳,获得10
39秒前
QAQ发布了新的文献求助10
39秒前
飞快的雅青完成签到 ,获得积分10
41秒前
草上飞完成签到 ,获得积分10
42秒前
43秒前
qwer完成签到 ,获得积分10
44秒前
QAQ完成签到,获得积分10
48秒前
48秒前
48秒前
李健应助和谐诗柳采纳,获得10
50秒前
科目三应助科研通管家采纳,获得10
51秒前
研友_VZG7GZ应助科研通管家采纳,获得10
51秒前
英俊的铭应助科研通管家采纳,获得10
51秒前
顾矜应助科研通管家采纳,获得10
51秒前
彭于晏应助科研通管家采纳,获得10
51秒前
科研通AI2S应助科研通管家采纳,获得10
51秒前
51秒前
CodeCraft应助科研通管家采纳,获得10
51秒前
打打应助科研通管家采纳,获得10
51秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322010
关于积分的说明 10208485
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872