An Approach Based on Transfer Learning to Lifetime Degradation Rate Prediction of the Dry-Type Transformer

变压器 计算机科学 人工神经网络 软件可移植性 机器学习 学习迁移 可靠性工程 人工智能 工程类 数据挖掘 电压 电气工程 程序设计语言
作者
Ying Li,Aimin Zhang,Jingjing Huang,Zhe Xu
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:70 (2): 1811-1819 被引量:11
标识
DOI:10.1109/tie.2022.3156039
摘要

Lifetime prediction of the power transformer plays an important role in maintaining the stable operation of power equipment. However, due to the complexity of insulation structure degenerative process, the existing methods featuring high cost and low precision are not effective enough in transformer life time prediction. Meanwhile, how to effectively and promptly respond to a new prediction scenario of insufficient and limited data is a common challenge for all the data-driven prediction methods. To address these concerns, a prediction approach of a back adoptive adjustment transfer learning scheme (BAATL) is proposed for lifetime degradation prediction of the dry-type transformer. The power transformer condition monitoring data of Supervisory Control and Data Acquisition system is conducted as the data driven. A deep neural network, a transfer learning module and a back adjustment module are constructed to realize feature extraction, domain adaptation and prediction network optimization. The proposed scheme is able to improve prediction accuracy and resolves the problems and drawbacks of traditional prediction methods, and presents its superior portability and application potential in the case of data shortage and scenario change. With authentic datasets, simulation tests performed on the condition monitoring data of dry-type transformers prove the effectiveness of the proposed scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wdfddzh关注了科研通微信公众号
1秒前
豪豪发布了新的文献求助10
1秒前
莫莫莫莫几完成签到,获得积分10
1秒前
田様应助南方周末采纳,获得10
1秒前
耿耿完成签到,获得积分10
1秒前
2秒前
3秒前
4秒前
4秒前
5秒前
5秒前
超级觅风发布了新的文献求助10
5秒前
科研通AI5应助血矞采纳,获得10
6秒前
笨笨松发布了新的文献求助10
6秒前
6秒前
tingtingzhang完成签到 ,获得积分10
8秒前
2thered发布了新的文献求助10
9秒前
无奈曼云发布了新的文献求助10
10秒前
周杰伦发布了新的文献求助10
12秒前
qijingchun发布了新的文献求助10
12秒前
积极鱼完成签到 ,获得积分10
13秒前
XCZV完成签到,获得积分20
15秒前
16秒前
Millian完成签到,获得积分10
16秒前
酷波er应助天天向上采纳,获得10
16秒前
如你所liao完成签到,获得积分10
17秒前
123完成签到,获得积分10
18秒前
SciGPT应助游一采纳,获得10
18秒前
饱满的大碗完成签到 ,获得积分10
18秒前
19秒前
19秒前
烟花应助言言采纳,获得10
19秒前
ttt发布了新的文献求助10
19秒前
20秒前
maox1aoxin应助FAYE采纳,获得30
21秒前
21秒前
21秒前
22秒前
豪豪发布了新的文献求助10
22秒前
25秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798859
求助须知:如何正确求助?哪些是违规求助? 3344607
关于积分的说明 10320917
捐赠科研通 3061108
什么是DOI,文献DOI怎么找? 1680042
邀请新用户注册赠送积分活动 806837
科研通“疑难数据库(出版商)”最低求助积分说明 763386