Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM

太阳辐照度 辐照度 光伏系统 过度拟合 均方误差 人工神经网络 计算机科学 气象学 环境科学 机器学习 工程类 统计 数学 地理 物理 电气工程 量子力学
作者
Xiangyun Qing,Yugang Niu
出处
期刊:Energy [Elsevier BV]
卷期号:148: 461-468 被引量:818
标识
DOI:10.1016/j.energy.2018.01.177
摘要

Prediction of solar irradiance is essential for minimizing energy costs and providing high power quality in electrical power grids with distributed solar photovoltaic generations. However, for residential and small commercial users deploying on-site photovoltaic generations, the historical irradiance data can not be obtained directly because of expensive solar irradiance meters. Thanks to increasingly improved weather forecasting service provided by local meteorological organizations, weather forecasting data such as temperature, dew point, humidity, visibility, wind speed and descriptive weather summary, are becoming readily available through the Internet, while the irradiance forecasting data are often unavailable. This paper proposes a novel solar prediction scheme for hourly day-ahead solar irradiance prediction by using the weather forecasting data. This study formulates the prediction problem as a structured output prediction problem jointly predicting multiple outputs simultaneously. The proposed prediction model is trained by using long short-term memory (LSTM) networks taking into account the dependence between consecutive hours of the same day. We compare persistence algorithm, linear least square regression and multilayered feedforward neural networks using backpropagation algorithm (BPNN) for solar irradiance prediction. The experimental results on a dataset collected in island of Santiago, Cape Verde, demonstrate that the proposed algorithm outperforms these competitive algorithms for single output prediction. The proposed algorithm is %18.34 more accurate than BPNN in terms of root mean square error (RMSE) by using about 2 years training data to predict half-year testing data. Moreover, compared with BPNN, the proposed algorithm also shows less overfitting and better generalization capability. For a case using 10 years of historical data to predict 1 year of irradiance data, the prediction RMSE using the proposed LSTM algorithm decreases by 42.9% against BPNN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_nPPzon完成签到,获得积分10
刚刚
chen完成签到,获得积分20
1秒前
Maestro_S应助123采纳,获得10
1秒前
单于思雁发布了新的文献求助10
1秒前
小月Anna完成签到,获得积分10
2秒前
3秒前
5秒前
科研通AI2S应助清欢采纳,获得30
6秒前
虚幻乐萱发布了新的文献求助10
7秒前
7秒前
yykyyk发布了新的文献求助10
7秒前
星辰大海应助忧虑的鹭洋采纳,获得10
7秒前
larsy完成签到 ,获得积分10
9秒前
10秒前
赘婿应助饱满雪柳采纳,获得10
14秒前
小姚发布了新的文献求助10
16秒前
zz7完成签到,获得积分10
16秒前
16秒前
YF是杨芳完成签到 ,获得积分10
18秒前
19秒前
一码归一码完成签到 ,获得积分10
19秒前
不想干活应助123采纳,获得30
20秒前
大个应助fmr采纳,获得10
20秒前
wwz完成签到 ,获得积分10
21秒前
21秒前
英姑应助心灵美雅霜采纳,获得10
21秒前
FYZ完成签到,获得积分10
22秒前
白鹤发布了新的文献求助20
22秒前
23秒前
筱灬发布了新的文献求助10
24秒前
26秒前
大模型应助负责的方盒采纳,获得10
26秒前
27秒前
29秒前
29秒前
义气溪流完成签到,获得积分10
30秒前
32秒前
33秒前
fmr发布了新的文献求助10
33秒前
没钱搞什么学术完成签到 ,获得积分10
34秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 840
Acylated delphinidin glucosides and flavonols from Clitoria ternatea 800
Nanosuspensions 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4188515
求助须知:如何正确求助?哪些是违规求助? 3724370
关于积分的说明 11734786
捐赠科研通 3401474
什么是DOI,文献DOI怎么找? 1866599
邀请新用户注册赠送积分活动 923440
科研通“疑难数据库(出版商)”最低求助积分说明 834502