Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes

MXenes公司 材料科学 纳米材料 电极 储能 纳米技术 电容 制作 电化学 光电子学 多孔性 超级电容器 工程物理 复合材料 功率(物理) 化学 工程类 物理 医学 病理 物理化学 量子力学 替代医学
作者
Yu Xia,Tyler S. Mathis,Meng‐Qiang Zhao,Babak Anasori,Alei Dang,Zehang Zhou,Hyesung Cho,Yury Gogotsi,Shu Yang
出处
期刊:Nature [Nature Portfolio]
卷期号:557 (7705): 409-412 被引量:1108
标识
DOI:10.1038/s41586-018-0109-z
摘要

The scalable and sustainable manufacture of thick electrode films with high energy and power densities is critical for the large-scale storage of electrochemical energy for application in transportation and stationary electric grids. Two-dimensional nanomaterials have become the predominant choice of electrode material in the pursuit of high energy and power densities owing to their large surface-area-to-volume ratios and lack of solid-state diffusion1,2. However, traditional electrode fabrication methods often lead to restacking of two-dimensional nanomaterials, which limits ion transport in thick films and results in systems in which the electrochemical performance is highly dependent on the thickness of the film1-4. Strategies for facilitating ion transport-such as increasing the interlayer spacing by intercalation5-8 or introducing film porosity by designing nanoarchitectures9,10-result in materials with low volumetric energy storage as well as complex and lengthy ion transport paths that impede performance at high charge-discharge rates. Vertical alignment of two-dimensional flakes enables directional ion transport that can lead to thickness-independent electrochemical performances in thick films11-13. However, so far only limited success11,12 has been reported, and the mitigation of performance losses remains a major challenge when working with films of two-dimensional nanomaterials with thicknesses that are near to or exceed the industrial standard of 100 micrometres. Here we demonstrate electrochemical energy storage that is independent of film thickness for vertically aligned two-dimensional titanium carbide (Ti3C2T x ), a material from the MXene family (two-dimensional carbides and nitrides of transition metals (M), where X stands for carbon or nitrogen). The vertical alignment was achieved by mechanical shearing of a discotic lamellar liquid-crystal phase of Ti3C2T x . The resulting electrode films show excellent performance that is nearly independent of film thickness up to 200 micrometres, which makes them highly attractive for energy storage applications. Furthermore, the self-assembly approach presented here is scalable and can be extended to other systems that involve directional transport, such as catalysis and filtration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
国家栋梁完成签到 ,获得积分10
1秒前
1秒前
DJM发布了新的文献求助10
1秒前
陈皮发布了新的文献求助10
1秒前
上官若男应助吾侪采纳,获得10
1秒前
科研通AI5应助cduv采纳,获得30
1秒前
科研通AI5应助barrycream采纳,获得10
2秒前
2秒前
2秒前
LT发布了新的文献求助10
2秒前
愉快的夏旋完成签到,获得积分20
3秒前
Asteria完成签到,获得积分10
4秒前
液氧发布了新的文献求助10
4秒前
积极江舟发布了新的文献求助10
4秒前
5秒前
5秒前
慕青应助啊啊啊123采纳,获得10
6秒前
Hello应助flywo采纳,获得10
6秒前
老实博超发布了新的文献求助10
6秒前
深情安青应助lily采纳,获得10
6秒前
Hi完成签到 ,获得积分10
6秒前
坚定的诗双发布了新的文献求助150
6秒前
7秒前
阿信发布了新的文献求助10
8秒前
江洋小偷完成签到,获得积分10
8秒前
小桃耶完成签到,获得积分10
9秒前
xxx发布了新的文献求助10
9秒前
易二十发布了新的文献求助10
10秒前
hyl完成签到,获得积分10
10秒前
17完成签到 ,获得积分10
10秒前
10秒前
10秒前
10秒前
危机的易梦完成签到,获得积分10
11秒前
11秒前
完美世界应助蓝丝绒采纳,获得10
12秒前
梦里吃早饭完成签到,获得积分10
12秒前
斯文败类应助wa采纳,获得10
12秒前
追梦完成签到 ,获得积分10
12秒前
科研通AI5应助小岚乖乖采纳,获得10
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3806325
求助须知:如何正确求助?哪些是违规求助? 3351096
关于积分的说明 10352817
捐赠科研通 3066979
什么是DOI,文献DOI怎么找? 1684207
邀请新用户注册赠送积分活动 809433
科研通“疑难数据库(出版商)”最低求助积分说明 765487