Deep Reinforcement Q-Learning for Intelligent Traffic Signal Control with Partial Detection

强化学习 交叉口(航空) 计算机科学 实时计算 信号(编程语言) 智能交通系统 交通生成模型 代表(政治) 人工智能 工程类 政治学 政治 航空航天工程 土木工程 程序设计语言 法学
作者
Romain Ducrocq,Nadir Farhi
出处
期刊:International Journal of Intelligent Transportation Systems Research [Springer Science+Business Media]
卷期号:21 (1): 192-206 被引量:14
标识
DOI:10.1007/s13177-023-00346-4
摘要

Intelligent traffic signal controllers, applying DQN algorithms to traffic light policy optimization, efficiently reduce traffic congestion by adjusting traffic signals to real-time traffic. Most propositions in the literature however consider that all vehicles at the intersection are detected, an unrealistic scenario. Recently, new wireless communication technologies have enabled cost-efficient detection of connected vehicles by infrastructures. With only a small fraction of the total fleet currently equipped, methods able to perform under low detection rates are desirable. In this paper, we propose a deep reinforcement Q-learning model to optimize traffic signal control at an isolated intersection, in a partially observable environment with connected vehicles. First, we present the novel DQN model within the RL framework. We introduce a new state representation for partially observable environments and a new reward function for traffic signal control, and provide a network architecture and tuned hyper-parameters. Second, we evaluate the performances of the model in numerical simulations on multiple scenarios, in two steps. At first in full detection against existing actuated controllers, then in partial detection with loss estimates for proportions of connected vehicles. Finally, from the obtained results, we define thresholds for detection rates with acceptable and optimal performance levels. The source code implementation of the model is available at: https://github.com/romainducrocq/DQN-ITSCwPD
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
DT完成签到 ,获得积分10
刚刚
刚刚
张雯雯完成签到,获得积分10
1秒前
1秒前
超级的千青完成签到 ,获得积分10
3秒前
Zkxxxx完成签到,获得积分10
3秒前
3秒前
3秒前
司徒文青应助冷静灵竹采纳,获得30
4秒前
英姑应助DYL采纳,获得10
4秒前
yaolei完成签到,获得积分10
4秒前
4秒前
ZhouYW应助HDoki采纳,获得10
4秒前
Lucas应助LWJ采纳,获得10
4秒前
4秒前
5秒前
滴滴哒发布了新的文献求助10
5秒前
0128lun完成签到,获得积分10
6秒前
动漫大师发布了新的文献求助10
6秒前
李帅完成签到,获得积分10
7秒前
黑猫完成签到,获得积分10
8秒前
换胃思考发布了新的文献求助10
9秒前
9秒前
风吹屁屁凉完成签到,获得积分10
9秒前
苏苏发布了新的文献求助10
10秒前
淡淡书白完成签到,获得积分10
10秒前
10秒前
11秒前
科研通AI5应助zby采纳,获得10
11秒前
paleo-地质发布了新的文献求助10
11秒前
wealan完成签到,获得积分0
11秒前
雪霓裳完成签到,获得积分10
11秒前
闪闪的夏之完成签到,获得积分10
11秒前
wwqc完成签到,获得积分0
11秒前
12秒前
12秒前
12秒前
别吃我的鱼完成签到,获得积分10
12秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792815
求助须知:如何正确求助?哪些是违规求助? 3337271
关于积分的说明 10284330
捐赠科研通 3054023
什么是DOI,文献DOI怎么找? 1675755
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761534