Recent advanced self-propelling salt-blocking technologies for passive solar-driven interfacial evaporation desalination systems

海水淡化 蒸发 材料科学 工艺工程 蒸发器 被动式太阳能建筑设计 太阳能淡化 环境科学 太阳能 机械工程 工程物理 工程类 电气工程 气象学 生物 热交换器 物理 遗传学
作者
Minhao Sheng,Yawei Yang,Xiaoqing Bin,Shihan Zhao,Cheng Pan,Fahad Nawaz,Wenxiu Que
出处
期刊:Nano Energy [Elsevier]
卷期号:89: 106468-106468 被引量:106
标识
DOI:10.1016/j.nanoen.2021.106468
摘要

Conventional active seawater evaporation technologies, that is, they include components with mechanical moving parts, generally involve large plants with high capital and operating costs. Recently, the passive solar-driven interfacial evaporation (PSDIE) with no active parts is considered as one of the most promising solar energy utilization and freshwater acquisition way. Especially in isolated and impoverished off-grid areas, passive desalination with economic feasibility and reliability has great application prospects. Based on the effective optical-thermal control of evaporator design and reasonable arrangement of deployment scheme, thermal localization in the vapor-liquid interface is conducive to reducing the heat dissipation into the bulk water and significantly improving the efficiency of desalination. Nonetheless, the Achilles’ heel of the technology, namely the existence of salt accumulation at the photothermal interface under the condition of high intensity work including concentrated brine water and intense solar irradiation, which inevitably reduces the availability of fresh water resources and the service life of the evaporator. Addressing this issue is of the utmost importance and arduous task to maintain uninterrupted passive evaporator operation. In this review, the outline of the state-of-the-art self-propelling salt-blocking strategies in PSDIE is mainly divided into three categories, i.e. mechanical removal, shielding effect, and force-driven fluid flow. Finally, the challenges and prospects of salt resistance in PSDIE are emphasized, providing a roadmap for the future development of solar evaporation technology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
shinysparrow应助科研通管家采纳,获得50
刚刚
刚刚
桐桐应助科研通管家采纳,获得10
刚刚
2秒前
dilli发布了新的文献求助10
5秒前
5秒前
6秒前
8秒前
13秒前
14秒前
16秒前
MJS完成签到,获得积分10
17秒前
skyrmion完成签到 ,获得积分10
17秒前
18秒前
Limanman完成签到,获得积分10
19秒前
小二郎应助fzr706采纳,获得10
20秒前
23秒前
Hello应助cpuczy采纳,获得10
24秒前
斯文败类应助小雷采纳,获得10
25秒前
张三完成签到,获得积分10
26秒前
32秒前
37秒前
cpuczy发布了新的文献求助10
37秒前
尊敬的半梅完成签到 ,获得积分10
38秒前
40秒前
fzr706发布了新的文献求助10
41秒前
东方神齐发布了新的文献求助10
42秒前
Hello应助完美的一天采纳,获得10
44秒前
45秒前
47秒前
qrj发布了新的文献求助10
47秒前
吴谷杂粮发布了新的文献求助10
51秒前
58秒前
1分钟前
1分钟前
1分钟前
啦啦啦啦啦应助虞无声采纳,获得10
1分钟前
1分钟前
杨佳毅发布了新的文献求助10
1分钟前
高分求助中
请在求助之前详细阅读求助说明!!!! 20000
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 1000
The Three Stars Each: The Astrolabes and Related Texts 900
Yuwu Song, Biographical Dictionary of the People's Republic of China 700
[Lambert-Eaton syndrome without calcium channel autoantibodies] 520
Bernd Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
A radiographic standard of reference for the growing knee 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2471399
求助须知:如何正确求助?哪些是违规求助? 2138002
关于积分的说明 5448099
捐赠科研通 1861978
什么是DOI,文献DOI怎么找? 925987
版权声明 562747
科研通“疑难数据库(出版商)”最低求助积分说明 495308