单调的工作
能量学
步态
队列
运动员
优秀运动员
能源消耗
人口学
物理医学与康复
医学
物理疗法
数学
统计
内科学
生态学
生物
社会学
作者
Naroa Etxebarria,Wayne Spratford,Jon Iriberri,Meg Ross,Josu Gomez-Ezeiza,David B. Pyne
标识
DOI:10.1080/17461391.2021.1948615
摘要
Race walkers must conform to a unique gait pattern with no visible loss of contact with the ground. However, how the gait pattern affects the race walking economy is unclear. We investigated the energy cost (amount of energy spent per distance unit) at different race walking velocities and over a 25 km hybrid walk. Twenty-one international-level male race walkers (V˙O2peak 63.8 ± 4.3 ml kg-1 min-1, age 31 ± 5 y, body mass 68.1 ± 7.0 kg) performed an incremental treadmill test consisting of 4 × 4 min submaximal stages with 1 km h-1 increments, and a 25 km submaximal hybrid walk (treadmill-overground) on separate days. Energy cost was measured continuously during the submaximal test and at km 0-1, 6-7, 12-13, 18-19, 23-24 of the 25 km hybrid walk. The CRW was similar across the four submaximal stages where half the athletes completed them at a higher (1 km h-1) absolute velocity (-0.01-0.15 ± ∼0.65); range of standardised differences ±90% CL, with a tendency for higher performing athletes to have a lower CRW when this was analysed during absolute race walking velocities of 12, 13 and 14 km-1 for the entire cohort (0.46-0.49 ± ∼0.67). There was no substantial change in CRW from the start to the end of the 25 km walk for the entire cohort (0.08 ± 2.2; standardised change ±90% CL). Elite race walkers are characterised by having a similar energy cost among athletes who perform at the same relative exercise intensity, and substantially higher energetics than counterpart elite endurance runners.
科研通智能强力驱动
Strongly Powered by AbleSci AI