管道(软件)
计算机科学
忠诚
人工智能
水准点(测量)
高保真
扩散
分辨率(逻辑)
样品(材料)
图像(数学)
图像质量
算法
模式识别(心理学)
计算机视觉
工程类
物理
地理
程序设计语言
电气工程
热力学
电信
大地测量学
作者
Jonathan Ho,Chitwan Saharia,William Chan,David J. Fleet,Mohammad Norouzi,Tim Salimans
出处
期刊:Cornell University - arXiv
日期:2021-01-01
被引量:188
标识
DOI:10.48550/arxiv.2106.15282
摘要
We show that cascaded diffusion models are capable of generating high fidelity images on the class-conditional ImageNet generation benchmark, without any assistance from auxiliary image classifiers to boost sample quality. A cascaded diffusion model comprises a pipeline of multiple diffusion models that generate images of increasing resolution, beginning with a standard diffusion model at the lowest resolution, followed by one or more super-resolution diffusion models that successively upsample the image and add higher resolution details. We find that the sample quality of a cascading pipeline relies crucially on conditioning augmentation, our proposed method of data augmentation of the lower resolution conditioning inputs to the super-resolution models. Our experiments show that conditioning augmentation prevents compounding error during sampling in a cascaded model, helping us to train cascading pipelines achieving FID scores of 1.48 at 64x64, 3.52 at 128x128 and 4.88 at 256x256 resolutions, outperforming BigGAN-deep, and classification accuracy scores of 63.02% (top-1) and 84.06% (top-5) at 256x256, outperforming VQ-VAE-2.
科研通智能强力驱动
Strongly Powered by AbleSci AI