Research on lithology identification method based on mechanical specific energy principle and machine learning theory

模拟退火 岩性 计算机科学 支持向量机 鉴定(生物学) 人工智能 数据挖掘 机器学习 模式识别(心理学) 算法 地质学 岩石学 植物 生物
作者
Haibo Liang,Haifeng Chen,Jinhong Guo,Jing Bai,Yingjun Jiang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:189: 116142-116142 被引量:21
标识
DOI:10.1016/j.eswa.2021.116142
摘要

Lithology identification is an important part of petroleum drilling engineering. Accurate identification of lithology is the foundation to ensure the smooth operation of drilling engineering. Conventional lithology recognition mainly relies on human experience. The recognition accuracy depends on the level of technical personnel and the recognition response time is lagging. It is difficult to meet the demand. How to achieve rapid and intelligent recognition of lithology is one of the core technical problems faced by oil drilling. In order to solve this problem, this paper uses the mechanical specific energy and other ground parameters to establish a rapid and intelligent recognition method of lithology based on the simulated annealing optimization support vector machine model. In order to improve the accuracy of the model recognition, a large number of methods have been developed from two classes and multiple classes, simulation analysis results show that the lithology recognition model based on the principle of mechanical specific energy and the simulated annealing optimization support vector machine algorithm can predict a priori unknown data with a prediction accuracy of over 90%. Compared with the support vector machine model and the K-means model, simulated annealing optimization support vector machine is used for comparative analysis, the algorithm to establish a lithology recognition model has better performance and higher accuracy. The intelligent identification model of lithology based on the principle of mechanical specific energy and simulated annealing optimization support vector machine algorithm established in this paper can quickly and accurately identify lithology, and provide new technical support for oil drilling formation analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zsg发布了新的文献求助10
刚刚
Lmj发布了新的文献求助10
刚刚
搜集达人应助FIGMA采纳,获得10
1秒前
瀼瀼完成签到,获得积分10
1秒前
领导范儿应助li采纳,获得10
1秒前
芝士芝士完成签到,获得积分10
1秒前
科研界的一条狗完成签到,获得积分20
1秒前
Ava应助大仙儿采纳,获得10
1秒前
2秒前
周贝贝发布了新的文献求助10
2秒前
筱潇发布了新的文献求助30
2秒前
徐慧完成签到,获得积分10
2秒前
Revision完成签到,获得积分10
2秒前
MANA完成签到,获得积分20
3秒前
3秒前
怡然海云发布了新的文献求助10
3秒前
嘴嘴完成签到,获得积分10
4秒前
xiyuexue完成签到,获得积分10
4秒前
yan完成签到,获得积分10
5秒前
搜集达人应助锋feng采纳,获得10
5秒前
5秒前
sumugeng完成签到,获得积分10
5秒前
XIXI完成签到 ,获得积分10
5秒前
小彩彩完成签到,获得积分10
5秒前
哈喽完成签到,获得积分10
6秒前
Ming发布了新的文献求助10
7秒前
7秒前
zzzllll发布了新的文献求助10
8秒前
张张发布了新的文献求助10
8秒前
嘟嘟完成签到 ,获得积分10
8秒前
haipronl应助海绵君采纳,获得20
9秒前
10秒前
JamesPei应助拼搏的松鼠采纳,获得10
11秒前
阿靖完成签到,获得积分10
11秒前
cui完成签到,获得积分10
11秒前
慕青应助白日梦与狂想曲采纳,获得10
11秒前
12秒前
善学以致用应助南湖秋水采纳,获得10
12秒前
Captain完成签到,获得积分10
12秒前
CC发布了新的文献求助20
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792855
求助须知:如何正确求助?哪些是违规求助? 3337361
关于积分的说明 10284619
捐赠科研通 3054083
什么是DOI,文献DOI怎么找? 1675772
邀请新用户注册赠送积分活动 803778
科研通“疑难数据库(出版商)”最低求助积分说明 761548