微塑料
粒子(生态学)
化学
气溶胶
拉曼光谱
扫描电子显微镜
显微镜
粒径
荧光
人类健康
分析化学(期刊)
荧光显微镜
环境化学
纳米技术
材料科学
光学
复合材料
物理
海洋学
有机化学
物理化学
地质学
环境卫生
医学
作者
Hanjin Yoo,Minjeong Kim,Yoojin Lee,Jonghyeon Park,Hayeong Lee,Young‐Chul Song,Chul‐Un Ro
标识
DOI:10.1021/acs.analchem.3c00581
摘要
This study presents a novel and efficient method for analyzing inhalable airborne microplastics (AMPs) in ambient PM10 aerosols. Although many studies have been conducted on MPs in a variety of environments, the physicochemical characteristics of AMPs of inhalable size (<10 μm) in ambient PM10 are poorly understood because of the lack of suitable analytical methods. The method employed in this study combines fluorescence microscopy, Raman microspectrometry (RMS), and scanning electron microscopy/energy-dispersive X-ray spectrometry (SEM/EDX) for an efficient and reliable investigation of inhalable AMPs, which constitute a small portion of ambient PM10 aerosol particles. Fluorescence microscopy and staining are used to select particles with high MP potential from ambient urban PM10 aerosols. The combination of RMS and SEM/EDX then allows for a detailed characterization of these particles on a single-particle basis. The results of the study show that ∼0.008% of the particles collected using a PM10 sampler had high MP potential, corresponding to ∼800 particles/m3. Among the stained particles of <10 μm, 27% were determined to be plastic, while the remaining 73% were found to be from tire/road wear. The number of inhalable AMPs was estimated to be 192 (±127) particles/m3. This study provides an important insight into the characteristics of inhalable AMPs in ambient PM10 aerosols that are particularly critical in respect of human health and climate change. The authors highlight that the use of a single fluorescence staining method can overestimate the number of inhalable AMPs in ambient air by including tire/road wear particles. To the best of their knowledge, this is the first study to demonstrate the morphological and spectroscopic characteristics of the same individual inhalable AMPs.
科研通智能强力驱动
Strongly Powered by AbleSci AI