Preparation of LLZO template by electrospinning and study on flexible composite solid electrolyte based on 3D Li6.4La3Zr2Al0.2O12 framework

电解质 材料科学 静电纺丝 复合数 锂(药物) 模板 化学工程 电导率 复合材料 纳米技术 聚合物 电极 化学 物理化学 医学 工程类 内分泌学
作者
Yuexin Shen,Xingyue Sun,Chenglin Zhang,Genxiang Zhu
出处
期刊:International Journal of Electrochemical Science [Elsevier BV]
卷期号:18 (7): 100202-100202 被引量:4
标识
DOI:10.1016/j.ijoes.2023.100202
摘要

In this work, we innovatively used the electrospinning method to prepare templates, which were then used in the template method to prepare Li6.4La3Zr2Al0.2O12(LLZO). By combining the advantages of electrospinning and template methods, we greatly expanded the source of template materials for the template method. Different template materials combined with electrospinning can obtain LLZO with different structures and performance. At the same time, we innovatively combined PVDF-based solid electrolyte with high concentration of LiTFSI with 3D LLZO framework. Using the complex formed by N-methyl pyrrolidone (NMP) and lithium ion (Li+) as a charge carrier, unique lithium ion migration channels formed by high-concentration LiTFSI, and the joint effect of high-content LLZO, we obtained a composite solid electrolyte with excellent performance. It has high mechanical strength (1.4 MPa) and high Young's modulus (6.4 MPa), which effectively inhibits the growth of lithium dendrites. In addition, the composite solid electrolyte exhibits excellent ion conductivity at room temperature (2.07 ×10−4 S cm−1), and a lithium symmetric battery can operate stably for at least 1000 h at 50 ℃. After 100 cycles at a current density of 0.5 C at 50 ℃, the remaining specific capacity of LiFePO4 | 3D LLZO·CSE | Li was 141.9 mAh g−1, and the capacity retention rate was 96.4%. Our research results show that this low-cost LLZO template manufacturing method, combined with the excellent performance of the obtained composite solid electrolyte, has great potential in energy storage direction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
happy完成签到 ,获得积分10
刚刚
xinyang2448完成签到,获得积分10
刚刚
[刘小婷]完成签到,获得积分10
刚刚
辛勤的苡完成签到,获得积分10
刚刚
77完成签到,获得积分10
刚刚
大木头发布了新的文献求助30
1秒前
waver完成签到,获得积分10
1秒前
逍遥猪皮完成签到,获得积分10
1秒前
斯文败类应助Yr采纳,获得10
1秒前
Young完成签到,获得积分10
1秒前
脑残骑士老张完成签到,获得积分10
2秒前
青青子衿发布了新的文献求助10
2秒前
2秒前
summy完成签到,获得积分10
2秒前
Orange应助nana湘采纳,获得10
3秒前
雨墨幻山完成签到,获得积分10
4秒前
妩媚的语蕊完成签到,获得积分10
4秒前
4秒前
5秒前
zhouzhou完成签到,获得积分10
5秒前
zy完成签到,获得积分10
5秒前
An.完成签到,获得积分10
5秒前
震动的听枫完成签到,获得积分10
5秒前
5秒前
GL完成签到,获得积分10
5秒前
Mao耶完成签到,获得积分10
6秒前
Donby完成签到,获得积分10
6秒前
菲菲公主完成签到,获得积分10
7秒前
7秒前
lh完成签到,获得积分10
8秒前
续续完成签到,获得积分10
8秒前
qwer完成签到,获得积分10
8秒前
dc123456完成签到,获得积分10
8秒前
9秒前
nana湘完成签到,获得积分10
9秒前
coco完成签到,获得积分10
9秒前
Akim应助夏紫儿采纳,获得10
9秒前
twentinee发布了新的文献求助10
10秒前
led完成签到,获得积分10
10秒前
GL发布了新的文献求助50
10秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
The Oxford Handbook of Video Game Music and Sound 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827576
求助须知:如何正确求助?哪些是违规求助? 3369839
关于积分的说明 10458603
捐赠科研通 3089626
什么是DOI,文献DOI怎么找? 1699982
邀请新用户注册赠送积分活动 817573
科研通“疑难数据库(出版商)”最低求助积分说明 770271