Variational gated autoencoder-based feature extraction model for inferring disease-miRNA associations based on multiview features

自编码 计算机科学 人工智能 熵(时间箭头) 特征提取 小RNA 复杂网络 机器学习 模式识别(心理学) 人工神经网络 生物 生物化学 量子力学 基因 物理 万维网
作者
Yanbu Guo,Dongming Zhou,Xiaoli Ruan,Jinde Cao
出处
期刊:Neural Networks [Elsevier BV]
卷期号:165: 491-505 被引量:46
标识
DOI:10.1016/j.neunet.2023.05.052
摘要

MicroRNAs (miRNA) play critical roles in diverse biological processes of diseases. Inferring potential disease-miRNA associations enable us to better understand the development and diagnosis of complex human diseases via computational algorithms. The work presents a variational gated autoencoder-based feature extraction model to extract complex contextual features for inferring potential disease-miRNA associations. Specifically, our model fuses three different similarities of miRNAs into a comprehensive miRNA network and then combines two various similarities of diseases into a comprehensive disease network, respectively. Then, a novel graph autoencoder is designed to extract multilevel representations based on variational gate mechanisms from heterogeneous networks of miRNAs and diseases. Finally, a gate-based association predictor is devised to combine multiscale representations of miRNAs and diseases via a novel contrastive cross-entropy function, and then infer disease-miRNA associations. Experimental results indicate that our proposed model achieves remarkable association prediction performance, proving the efficacy of the variational gate mechanism and contrastive cross-entropy loss for inferring disease-miRNA associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
Adam完成签到,获得积分10
2秒前
3秒前
卿卿发布了新的文献求助10
3秒前
4秒前
csy发布了新的文献求助10
5秒前
林佳一发布了新的文献求助10
6秒前
liyajuan发布了新的文献求助10
7秒前
7秒前
詹严青发布了新的文献求助10
7秒前
ZXDDDD发布了新的文献求助10
8秒前
8秒前
superspace发布了新的文献求助10
8秒前
8秒前
缥缈的雁枫完成签到,获得积分10
8秒前
绝世冰淇淋完成签到 ,获得积分10
8秒前
9秒前
10秒前
10秒前
李爱国应助橘子采纳,获得10
11秒前
12秒前
12秒前
13秒前
Ting发布了新的文献求助10
13秒前
汉堡包应助林佳一采纳,获得10
13秒前
th余淮发布了新的文献求助10
13秒前
典雅晓丝完成签到,获得积分10
13秒前
14秒前
zyy给zyy的求助进行了留言
15秒前
15秒前
温夏完成签到 ,获得积分10
16秒前
17秒前
17秒前
17秒前
17秒前
17秒前
17秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
HVAC 1 toolkit : a toolkit for primary HVAC system energy calculation 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3839133
求助须知:如何正确求助?哪些是违规求助? 3381599
关于积分的说明 10518877
捐赠科研通 3100943
什么是DOI,文献DOI怎么找? 1707880
邀请新用户注册赠送积分活动 821988
科研通“疑难数据库(出版商)”最低求助积分说明 773084