GNNGLY: Graph Neural Networks for Glycan Classification

聚糖 计算机科学 卷积神经网络 图形 人工智能 机器学习 理论计算机科学 化学 生物化学 糖蛋白
作者
Alhasan Alkuhlani,Walaa Gad,Mohamed Roushdy,Abdel-Badeeh M. Salem
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 51838-51847 被引量:5
标识
DOI:10.1109/access.2023.3280123
摘要

Glycans are important biological molecules that can be found on their own or attached to other molecules. They have complex, branching structures that do not follow the linear structure. Glycans are crucial for many biological processes and they are involved in the development of several important diseases. Due to the complexity and the branched structure of glycans, most of the current studies have mainly focused on the other attached molecules instead of glycans themselves. This paper proposes, GNNGLY, a graph neural networks model for glycans classification. Firstly, Glycans are represented as molecular graphs, where atoms are represented as nodes and bonds are represented as edges. Graph convolutional networks (GCNs) are then used to make predictions on eight taxonomic classification levels and for the level of immunogenicity property. The performance results indicate that GNNGLY outperforms traditional machine learning methods and when compared to other existing tools for glycan classification, GNNGLY showed considerable performance results. GNNGLY could have a significant impact on the field of glycoinformatics and related research areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
liuwenjie应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
1秒前
赵先生应助科研通管家采纳,获得10
1秒前
liuwenjie应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
COSMAO应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
COSMAO应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
脑洞疼应助和谐的芷文采纳,获得10
2秒前
胡晔楠关注了科研通微信公众号
2秒前
MchemG应助炙热的芙采纳,获得10
3秒前
金博洋发布了新的文献求助10
3秒前
彭于晏应助干煸四季豆采纳,获得10
3秒前
4秒前
徐行之发布了新的文献求助10
5秒前
dy完成签到 ,获得积分10
7秒前
7秒前
ttjo完成签到,获得积分10
7秒前
邱乐乐发布了新的文献求助10
8秒前
10秒前
12秒前
zc发布了新的文献求助10
12秒前
ni发布了新的文献求助20
14秒前
CipherSage应助褪色采纳,获得10
14秒前
17秒前
酷波er应助王小聪明采纳,获得10
17秒前
18秒前
九三发布了新的文献求助30
18秒前
小路发布了新的文献求助30
20秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5217962
求助须知:如何正确求助?哪些是违规求助? 4392247
关于积分的说明 13674920
捐赠科研通 4254581
什么是DOI,文献DOI怎么找? 2334523
邀请新用户注册赠送积分活动 1332187
关于科研通互助平台的介绍 1286219