亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Retrieval Augmented Generation–Enabled Large Language Model for Risk Stratification of Cutaneous Squamous Cell Carcinoma

医学 危险分层 基底细胞 分层(种子) 皮肤病科 肿瘤科 内科学 休眠 植物 生物 种子休眠 发芽
作者
Neil Jairath,Vartan Pahalyants,Shayan Cheraghlou,D. Maas,Nayoung Lee,Maressa C. Criscito,Mary L. Stevenson,Apoorva Mehta,Zachary Leibovit-Reiben,Alyssa Stockard,Nicole Doudican,Aaron R. Mangold,John A. Carucci
出处
期刊:JAMA Dermatology [American Medical Association]
卷期号:161 (8): 796-796 被引量:1
标识
DOI:10.1001/jamadermatol.2025.1614
摘要

Importance There exists substantial heterogeneity in outcomes within T stages for patients with cutaneous squamous cell carcinoma (cSCC). Objective To determine whether a customized generative pretrained transformer model, trained on a comprehensive dataset with more than 1 trillion parameters and equipped with relevant focused context and retrieval augmented generation (RAG), could excel in aggregating and interpreting vast quantities of data to develop a novel class-based risk stratification system that outperforms the current standards. Design, Setting, and Participants To build the RAG knowledge base, a systematic review of the literature was conducted that addressed risk factors for poor outcomes in cSCC. Using the RAG-enabled generative pretrained transformer (GPT) model, we developed a novel class-based risk stratification system that assigned point values for risk factors, culminating in a GPT-based prognostication system called the artificial intelligence–derived risk score (AIRIS). The system’s performance was validated on a combined prospective and retrospective cohort of 2379 primary cSCC tumors (1996-2023) with at least 36 months of follow-up, against Brigham and Women’s Hospital (BWH) and American Joint Committee on Cancer Staging Manual, eighth edition ( AJCC8 ) systems in stratifying risk for locoregional recurrence (LR), nodal metastasis (NM), distant metastasis (DM), and disease-specific death (DSD). Main Outcomes and Measures Performance metrics evaluated included distinctiveness, homogeneity, and monotonicity, as defined by the AJCC8 , as well as sensitivity, specificity, positive predictive value, negative predictive value, accuracy, the area under the receiver operating characteristic curve, and concordance. Results The median age at diagnosis was 73 (IQR, 64-81) years, with 38.5% female patients and 61.5% male patients. The AIRIS prognostication system demonstrated superior sensitivity across all outcomes (LR, 49.1%; NM, 73.7%; DM, 82.5%; and DSD, 72.2%) and the highest area under the receiver operating characteristic curve values (LR, 0.69; NM, 0.81; DM, 0.85; and DSD, 0.80), indicating significantly enhanced discriminative capability compared with the BWH and AJCC8 systems. While all systems were comparably distinctive, the AIRIS prognostication system consistently demonstrated the lowest proportion of tumors exhibiting poor outcomes in low-risk categories, suggesting its improved homogeneity and monotonicity. Conclusions and Relevance The results of this diagnostic study suggest that the AIRIS system outperforms the existing BWH and AJCC8 prognostication systems, potentially providing a more effective tool for predicting poor outcomes in cSCC. This study illustrates the potential of large language models in refining prognostic tools, offering implications for treating patients with cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助小鱼采纳,获得10
3秒前
CC完成签到 ,获得积分10
10秒前
12秒前
星先生完成签到 ,获得积分10
12秒前
布隆的保龄球完成签到,获得积分10
12秒前
Arthur完成签到,获得积分10
13秒前
xjd关注了科研通微信公众号
15秒前
冰汤葫芦完成签到,获得积分10
16秒前
小鱼发布了新的文献求助10
17秒前
不存在的最优解完成签到,获得积分10
17秒前
19秒前
冰汤葫芦发布了新的文献求助10
25秒前
25秒前
NattyPoe应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
25秒前
Fancy应助科研通管家采纳,获得10
25秒前
25秒前
25秒前
Lucas应助科研通管家采纳,获得10
25秒前
冀东关注了科研通微信公众号
26秒前
xjd发布了新的文献求助10
28秒前
30秒前
SolderOH完成签到,获得积分10
30秒前
31秒前
Cheung2121发布了新的文献求助30
36秒前
简啦啦完成签到 ,获得积分10
38秒前
轻松的水壶完成签到 ,获得积分10
38秒前
46秒前
47秒前
刘甲凯发布了新的文献求助10
50秒前
Rn完成签到 ,获得积分0
51秒前
复杂妙海完成签到,获得积分10
52秒前
研友_VZG7GZ应助oi小八采纳,获得10
54秒前
55秒前
58秒前
冀东发布了新的文献求助20
1分钟前
my196755完成签到,获得积分10
1分钟前
田様应助Cheung2121采纳,获得10
1分钟前
赚钱养宝钏完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Electron Energy Loss Spectroscopy 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5779691
求助须知:如何正确求助?哪些是违规求助? 5649064
关于积分的说明 15452180
捐赠科研通 4910815
什么是DOI,文献DOI怎么找? 2642926
邀请新用户注册赠送积分活动 1590597
关于科研通互助平台的介绍 1545027