Research on lightweight pipeline defects detection algorithm based on attention mechanism

机制(生物学) 计算机科学 管道(软件) 算法 物理 操作系统 量子力学
作者
Ruihao Liu,Zhongxi Shao,Qiang Sun,Jingpeng Liu,Zhenzhong Yu
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (7): 075407-075407
标识
DOI:10.1088/1361-6501/ade553
摘要

Abstract The safe operation of underground pipelines is critical for production and daily life. To enhance the effectiveness of pipeline intelligent detection and evaluation, this study proposes a novel lightweight pipeline defect detection algorithm based on attention mechanism, LA-YOLO. Using YOLOv10n as the baseline model, channel and spatial attention mechanisms are incorporated into the backbone network to significantly enhance the model’s capability in extracting target features. The lightweight fasternet block module is introduced to construct the C2f-LF module, replacing the original C2f module to simplify the network structure. A lightweight coordinate attention shared parameters detection head is developed, combining attention mechanisms with shared convolutional technology. This innovation markedly reduces the number of parameters while maintaining detection accuracy. Additionally, Wise-IOU is adopted as the loss function instead of Complete-IoU, further improving the model’s precision. To achieve additional model compression, channel pruning is applied to the LA-YOLO architecture, and knowledge distillation is used to recover potential accuracy loss. Experimental results on the USDID demonstrate that the proposed model maintains comparable accuracy and efficiency to the baseline YOLOv10n, and reduces model size, parameters, and floating-point operations by 76.5%, 76.5%, and 57.8%, respectively. The final model size is only 1.2 MB, highlighting its strong potential for real-world deployment in resource-constrained pipeline inspection systems. This work provides a robust and practical solution for efficient and scalable pipeline defect detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qrwyqjbsd应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
刚刚
科目三应助科研通管家采纳,获得10
刚刚
Fsy应助科研通管家采纳,获得10
刚刚
子车茗应助科研通管家采纳,获得20
刚刚
Maestro_S应助科研通管家采纳,获得10
刚刚
鲁远望应助科研通管家采纳,获得10
刚刚
Itsuki完成签到,获得积分20
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
传奇3应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
zzz发布了新的文献求助10
1秒前
1秒前
赘婿应助科研通管家采纳,获得30
1秒前
Maestro_S应助科研通管家采纳,获得10
1秒前
清风朗月完成签到,获得积分20
1秒前
Jasper应助科研通管家采纳,获得10
1秒前
香蕉觅云应助科研通管家采纳,获得10
1秒前
文静的冷安完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
Deng完成签到,获得积分10
2秒前
王梓磬发布了新的文献求助10
3秒前
3秒前
3秒前
fdpb发布了新的文献求助10
4秒前
4秒前
可可完成签到,获得积分20
4秒前
高院士发布了新的文献求助50
4秒前
脑洞疼应助Dante采纳,获得10
5秒前
安之若素发布了新的文献求助10
5秒前
十八鱼发布了新的文献求助10
5秒前
Criminology34应助小张采纳,获得10
6秒前
minnie发布了新的文献求助10
6秒前
金博发布了新的文献求助10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
茶艺师试题库(初级、中级、高级、技师、高级技师) 1000
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertebrate Palaeontology, 5th Edition 560
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5361763
求助须知:如何正确求助?哪些是违规求助? 4491873
关于积分的说明 13984270
捐赠科研通 4394835
什么是DOI,文献DOI怎么找? 2414190
邀请新用户注册赠送积分活动 1406961
关于科研通互助平台的介绍 1381610