Transfer-Printed N-Type Conductive Polymer as Top Electrode for High-Efficiency Fully Solution-Processed Organic Solar Cells with Multifunctionality

材料科学 电极 导电体 有机太阳能电池 导电聚合物 纳米技术 聚合物 有机电子学 光电子学 复合材料 晶体管 电气工程 化学 物理化学 电压 工程类
作者
Yixin Xie,Ju Zhao,Haoran Tang,Ling Hong,Hui Li,Zhibin Li,Pengke Liu,Zishuo Xu,Chunchen Liu,Kai Zhang,Fei Huang
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.5c04665
摘要

Solution-printable processing represents a significant advantage for organic solar cells (OSCs), and the development of printable top electrodes is critical to achieve fully solution-processed organic photovoltaics. Currently, conventional solution-processed top electrodes often face challenges, such as damage to the underlying structure or poor interfacial contact. For the cathode, it is more appropriate to use n-type conducting materials with a low work function (WF). In this work, the combined n-type conductive polymer poly(3,7-dihydrobenzo[1,2-b:4,5-b']difuran-2,6-dione):poly(2-ethyl-2-oxazoline) (PBFDO:PEOx) is used as a top electrode in OSCs via transfer printing, enabling a robust, nondestructive contact between the printed top electrode and the interfacial layer. Due to its high conductivity, suitable WF, and protective role on the underlying structure, the introduced PBFDO:PEOx electrode promotes charge transfer and extraction while reducing nonradiative charge recombination and energy loss. As a result, OSCs based on PBFDO:PEOx/AgNWs printed top electrodes ultimately achieve a power conversion efficiency (PCE) of 14.2%, which is one of the highest PCE values among fully solution-processed OSCs without mirrors. Furthermore, the devices with PBFDO:PEOx electrodes exhibit an infrared blocking efficiency of over 80%, providing both excellent power generation and thermal insulation properties. This work presents a novel approach to the fabrication of printable top electrodes, providing a promising route for the advancement of fully solution-printed electronic devices.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
客厅狂欢完成签到,获得积分10
1秒前
1秒前
不器发布了新的文献求助10
1秒前
静鸭发布了新的文献求助10
1秒前
刘文思发布了新的文献求助10
2秒前
Alienwalker完成签到 ,获得积分10
2秒前
2秒前
丁闯完成签到,获得积分20
2秒前
xxx完成签到,获得积分10
2秒前
球形的荒野完成签到,获得积分20
2秒前
听话的如风完成签到,获得积分10
3秒前
WUT完成签到,获得积分10
4秒前
牛小牛完成签到,获得积分10
5秒前
晚风完成签到,获得积分10
5秒前
科研通AI2S应助旋风大角牛采纳,获得10
6秒前
福桃完成签到,获得积分10
6秒前
汉堡包应助勤恳的宛菡采纳,获得10
6秒前
safa完成签到,获得积分10
7秒前
科研通AI5应助echo采纳,获得10
7秒前
科研通AI5应助大吉采纳,获得10
7秒前
dlm发布了新的文献求助10
8秒前
老实的小兔子完成签到,获得积分20
8秒前
再慕完成签到,获得积分10
8秒前
SciGPT应助Three采纳,获得10
8秒前
金金完成签到,获得积分10
9秒前
9秒前
汕头凯奇完成签到,获得积分10
10秒前
10秒前
laii完成签到,获得积分10
10秒前
fisker完成签到,获得积分10
11秒前
11秒前
11秒前
木木发布了新的文献求助20
11秒前
liuliu发布了新的文献求助50
11秒前
11秒前
科研通AI5应助dara997采纳,获得10
12秒前
浙江嘉兴完成签到,获得积分10
12秒前
不器完成签到,获得积分10
12秒前
13秒前
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
On translated images, stereotypes and disciplines 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834256
求助须知:如何正确求助?哪些是违规求助? 3376847
关于积分的说明 10495379
捐赠科研通 3096271
什么是DOI,文献DOI怎么找? 1704904
邀请新用户注册赠送积分活动 820296
科研通“疑难数据库(出版商)”最低求助积分说明 771940