Development and multi-center cross-setting validation of an explainable prediction model for sarcopenic obesity: a machine learning approach based on readily available clinical features

支持向量机 逻辑回归 机器学习 接收机工作特性 腰围 人工智能 随机森林 梯度升压 医学 肌萎缩性肥胖 预测建模 肌萎缩 肥胖 计算机科学 内科学
作者
Rongna Lian,Huiyu Tang,Zecong Chen,Xiaohong Chen,Shuyue Luo,Wenhua Jiang,Jiaojiao Jiang,Ming Yang
出处
期刊:Aging Clinical and Experimental Research [Springer Science+Business Media]
卷期号:37 (1)
标识
DOI:10.1007/s40520-025-02975-z
摘要

Abstract Objectives Sarcopenic obesity (SO), characterized by the coexistence of obesity and sarcopenia, is an increasingly prevalent condition in aging populations, associated with numerous adverse health outcomes. We aimed to identify and validate an explainable prediction model of SO using easily available clinical characteristics. Setting and participants A preliminary cohort of 1,431 participants from three community regions in Ziyang city, China, was used for model development and internal validation. For external validation, we utilized data from 832 residents of multi-center nursing homes. Measurements The diagnosis of SO was based on the European Society for Clinical Nutrition and Metabolism (ESPEN) and the European Association for the Study of Obesity (EASO) criteria. Five machine learning models (support vector machine, logistic regression, random forest, light gradient boosting machine, and extreme gradient boosting) were used to predict SO. The performance of these models was assessed by the area under the receiver operating characteristic curve (AUC). The SHapley Additive exPlanations (SHAP) approach was used for model interpretation. Results After feature reduction, an 8-feature model demonstrated good predictive ability. Among the five models tested, the support vector machine (SVM) model performed best in SO prediction in both internal (AUC = 0.862) and external (AUC = 0.785) validation sets. The eight key predictors identified were BMI, gender, neck circumference, waist circumference, thigh circumference, time to full tandem standing, time to five-times sit-to-stand, and age. SHAP analysis revealed BMI and gender as the most influential predictors. To facilitate the utilization of the SVM model in clinical setting, we developed a web application ( https://svcpredictapp.streamlit.app/ ). Conclusions We developed an explainable machine learning model to predict SO in aging community and nursing populations. This model offers a novel, accessible, and interpretable approach to SO prediction with potential to enhance early detection and intervention strategies. Further studies are warranted to validate our model in diverse populations and evaluate its impact on patient outcomes when integrated into comprehensive geriatric assessments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
M3L2发布了新的文献求助10
1秒前
柔弱凡松发布了新的文献求助10
1秒前
2秒前
咸鱼小武完成签到,获得积分10
2秒前
科研通AI5应助舒适路人采纳,获得10
2秒前
2秒前
3秒前
传奇3应助93采纳,获得10
5秒前
烟花应助不安夏青采纳,获得10
6秒前
6秒前
7秒前
7秒前
yvonnecao完成签到,获得积分10
7秒前
张哈哈发布了新的文献求助10
8秒前
8秒前
8秒前
lyc发布了新的文献求助30
8秒前
rpe发布了新的文献求助20
8秒前
大咖发布了新的文献求助10
8秒前
快乐海豚完成签到 ,获得积分10
9秒前
9秒前
深情安青应助蜗壳采纳,获得10
10秒前
11秒前
12秒前
12秒前
对波发布了新的文献求助30
12秒前
九日科研ing完成签到,获得积分10
13秒前
菜虫虫完成签到,获得积分10
13秒前
科研通AI5应助小玉采纳,获得10
14秒前
szbllc发布了新的文献求助30
14秒前
科研通AI5应助舒适路人采纳,获得10
14秒前
缥缈平彤完成签到 ,获得积分10
16秒前
16秒前
17秒前
子明完成签到 ,获得积分10
18秒前
科研小趴菜完成签到,获得积分10
19秒前
lyc完成签到,获得积分20
19秒前
20秒前
整齐凝竹完成签到 ,获得积分10
22秒前
tkurds发布了新的文献求助10
23秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242321
捐赠科研通 3044942
什么是DOI,文献DOI怎么找? 1671443
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759372