SMVSNN: An Intelligent Framework for Anticancer Drug–Drug Interaction Prediction Utilizing Spiking Multi-view Siamese Neural Networks

药品 抗癌药 计算机科学 人工神经网络 数量结构-活动关系 药物与药物的相互作用 药物重新定位 人工智能 药物发现 机器学习 计算生物学 药理学 医学 生物信息学 生物
作者
Guoliang Tan,Yijun Liu,Wujian Ye,Zexiao Liang,Wenjie Lin,Fan Ding
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c02205
摘要

The study of synergistic drug combinations is vital in cancer treatment, enhancing efficacy, reducing resistance, and minimizing side effects through complementary drug actions. Drug-drug interaction (DDI) analysis offers essential theoretical support, and with the rise of data science, intelligent algorithms are increasingly replacing traditional in vitro screening for predicting potential DDIs. Considering the limitations of previous computational methods, such as the application of a single view, overly direct concatenation of drug pair features, and existing data encoding that is difficult to handle, this paper proposes a novel DDI analysis and prediction framework, called the Spiking Multi-View Siamese Neural Network-based (SMVSNN) framework. First, the data of two drugs in each view are processed into fused features using a Siamese spiking convolutional network and a spiking neural perceptron. Second, the processed features from multiple views are integrated into a unified representation through a self-learning attention weight module. Finally, this unified representation is fed into a spiking multilayer perceptron network to obtain the prediction results. Compared to traditional intelligent algorithms, the spiking neurons and the siamese network in SMVSNN can more effectively extract and integrate latent information from drug pair data. Real anticancer drug data, including 904 drugs, 7730 DDI records, and 19 drug interactions, were extracted from authoritative public databases to assess the effectiveness of our framework. The 5-fold cross-validation indicates that SMVSNN outperforms previous models on the majority of metrics. SMVSNN is poised to be an effective method for inferring potential synergistic drug combinations in anticancer therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶送白粥应助1213采纳,获得10
2秒前
斯人如机发布了新的文献求助10
3秒前
5秒前
PN_Allen完成签到,获得积分10
7秒前
鱼仔完成签到,获得积分10
8秒前
Milo发布了新的文献求助10
9秒前
9秒前
科研通AI2S应助拾贰采纳,获得10
10秒前
10秒前
haofan17完成签到,获得积分0
10秒前
今后应助HH采纳,获得10
11秒前
糖糖猫发布了新的文献求助30
11秒前
sui完成签到,获得积分10
12秒前
14秒前
14秒前
sunlihao发布了新的文献求助10
16秒前
酒酒完成签到,获得积分10
17秒前
17秒前
Akim应助夏冰采纳,获得10
17秒前
17秒前
在水一方应助可耐的香露采纳,获得10
17秒前
脑洞疼应助Alex20000718采纳,获得10
17秒前
river123发布了新的文献求助10
18秒前
小柠檬完成签到,获得积分10
18秒前
怕黑蓉关注了科研通微信公众号
21秒前
24秒前
24秒前
26秒前
Carrot完成签到,获得积分10
28秒前
29秒前
英俊的铭应助orange9采纳,获得10
29秒前
29秒前
29秒前
29秒前
29秒前
Iwkwy发布了新的文献求助10
30秒前
30秒前
皮蛋努力科研完成签到 ,获得积分10
31秒前
32秒前
33秒前
高分求助中
Narcissistic Personality Disorder 700
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Single Element Semiconductors: Properties and Devices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3854926
求助须知:如何正确求助?哪些是违规求助? 3397690
关于积分的说明 10603123
捐赠科研通 3119478
什么是DOI,文献DOI怎么找? 1719310
邀请新用户注册赠送积分活动 828133
科研通“疑难数据库(出版商)”最低求助积分说明 777279