多金属氧酸盐
材料科学
锂(药物)
金属锂
金属有机骨架
固态
金属
离子
纳米技术
无机化学
化学工程
工程物理
阳极
有机化学
电极
冶金
催化作用
物理化学
工程类
吸附
内分泌学
化学
医学
作者
Hongfei Bao,Diancheng Chen,Hong Ma,Runtao Liu,Hao Lai,Bin Wang,Yichun Zheng,Mohang Cai,Yan Wang,Fangyan Xie,Jing Shuai,Xia Lu,Xiaolong Liu,Yang Sun
标识
DOI:10.1002/adfm.202505456
摘要
Abstract Solid‐state lithium metal batteries offer superior safety and energy capacity; however, their practical implementation remains severely limited by lithium (Li) dendrite formation and growth. Metal‐organic frameworks (MOFs) demonstrate significant efficacy in regulating Li + distribution for dendrite suppression. Nevertheless, inherent energy barriers within MOF channels substantially impede ion transport efficiency. Here, polyoxometalate‐functionalized MOFs (MOF@POM) is demonstrated as a novel strategy to enhance Li + screening and diffusion. The lithiophilic characteristics of POMs facilitate reduced energy barriers for Li + conduction across interfaces and through MOF pores. Furthermore, POMs, functioning as negatively charged entities, minimize anion‐lithium interactions, thereby promoting enhanced ion transport. While the MOF architecture provides precisely oriented ion channels for directed deposition, POMs enable low‐energy Li + diffusion pathways, effectively suppressing dendrite formation. The engineered MOF@POM interface exhibits exceptional ionic conductivity and reduced activation energy compared to conventional interfaces. Consequently, batteries incorporating MOF@POM interfaces demonstrate remarkable cycling stability. These findings elucidate the fundamental role of POMs in dendrite suppression within MOF structures, providing critical insights for advancing lithium metal anode battery technology.
科研通智能强力驱动
Strongly Powered by AbleSci AI