已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Binding Affinity Prediction and Pesticide Screening against Phytophthora sojae Using a Heterogeneous Interaction Graph Attention Network–Based Model

大豆疫霉 杀虫剂 图形 疫霉菌 计算生物学 计算机科学 化学 生物 植物 生态学 理论计算机科学
作者
Youxu Dai,Aiping Han,Hui-Jun Ma,Xuebo Jin,Danyang Zhu,Shiguang Sun,Ruiheng Li
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
被引量:2
标识
DOI:10.1021/acs.jcim.4c02295
摘要

Phytophthora root and stem rot in soybeans results in substantial economic losses worldwide. In this study, a machine learning model based on a heterogeneous interaction graph attention network model was constructed. The PDBbind data set, comprising 13,285 complexes with experimental pKa or pKi values, was utilized to train and evaluate the model, which was subsequently employed to screen candidate compounds against chitin synthase of Phytophthora sojae (PsChs1) in the Traditional Chinese Medicine Systems Pharmacology database, comprising 14,249 compounds. High-scoring candidate compounds were docked with PsChs1 protein using Discovery Studio, and their interaction energies were evaluated. Molecular dynamic simulations spanning 50 ns were performed using GROMACS to explore the stability of the complexes, trajectory analysis was conducted with root-mean-square deviations, and the hydrogen bonds, radius of gyration, MMPBSA binding free energy, and binding modes were analyzed. MOL011832 and MOL011833 were identified as potential pesticides, both of which were present in the herb Schizonepeta through database retrieval. The inhibitory effects of an ethanol extract of Schizonepeta against P. sojae were subsequently explored and confirmed in biological experiments. Overall, this study proves the feasibility and high efficiency of pesticide discovery using graph neural network–based models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
等待的香魔应助Gloyxtg采纳,获得10
2秒前
jh完成签到 ,获得积分10
4秒前
wonder123发布了新的文献求助10
5秒前
自由意志发布了新的文献求助10
8秒前
成就大白菜真实的钥匙完成签到 ,获得积分10
8秒前
9秒前
清爽冬莲完成签到 ,获得积分0
9秒前
oo完成签到,获得积分20
9秒前
10秒前
耶耶完成签到 ,获得积分10
13秒前
雅典的宠儿完成签到 ,获得积分10
13秒前
完美世界应助wonder123采纳,获得10
14秒前
littletown完成签到,获得积分10
17秒前
ceeray23应助Wu采纳,获得10
18秒前
体贴的夜山完成签到 ,获得积分10
19秒前
一一一多完成签到 ,获得积分0
22秒前
生物科研小白完成签到 ,获得积分10
24秒前
jimoon发布了新的文献求助10
26秒前
小二郎应助khan采纳,获得10
26秒前
30秒前
31秒前
江南之南完成签到 ,获得积分10
31秒前
多喝水完成签到 ,获得积分10
32秒前
33秒前
粥粥精发布了新的文献求助10
36秒前
khan发布了新的文献求助10
36秒前
丘比特应助娃哈哈采纳,获得10
37秒前
zzzzzz完成签到,获得积分10
41秒前
42秒前
科研通AI5应助jimoon采纳,获得10
42秒前
44秒前
烟花应助khan采纳,获得10
46秒前
房谷槐发布了新的文献求助10
47秒前
曾经问雁发布了新的文献求助10
49秒前
ZK发布了新的文献求助30
49秒前
李珂完成签到,获得积分10
52秒前
ceeray23应助Gloyxtg采纳,获得10
52秒前
祁风完成签到 ,获得积分10
53秒前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A Half Century of the Sonogashira Reaction 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5185715
求助须知:如何正确求助?哪些是违规求助? 4371117
关于积分的说明 13611844
捐赠科研通 4223406
什么是DOI,文献DOI怎么找? 2316401
邀请新用户注册赠送积分活动 1315015
关于科研通互助平台的介绍 1263947