Diverse and High-Quality Food Image Generation from Only Food Names

计算机科学 质量(理念) 食品质量 人工智能 多媒体 食品科学 认识论 哲学 化学
作者
Dongjian Yu,Weiqing Min,Xin Jin,Qian Jiang,Ying Jin,Shuqiang Jiang
出处
期刊:ACM Transactions on Multimedia Computing, Communications, and Applications [Association for Computing Machinery]
标识
DOI:10.1145/3730588
摘要

Food image generation holds promising application prospects in food design, advertising, and food education. However, the existing methods rely on information such as recipes, ingredients, or food names, which leads to generated food images with less intra-class diversity. When recipes, ingredients and food names are identical for the same food, the real-world images may vary significantly in appearance. The question of how to simultaneously ensure the quality and diversity of the generated images is a key issue. To this end, we employ pre-trained diffusion model and Transformer to propose a method for generating diverse and high-quality images of both Chinese and Western food, named CW-Food. Different from previous works that utilize an overall food feature to generate new images, CW-Food first decouples the food images to obtain common intra-class features and private instance features. Additionally, we design a Transformer-based feature fusion module to integrate the common and private features, in order to avoid the shortcomings of conventional methods. Moreover, we also utilize a pre-trained diffusion model as our backbone, which is fine-tuned using LoRA with the fused multi-variate features. Extensive experiments on four datasets demonstrate the advantages of our proposed method, producing diverse and high-quality food images encompassing both Chinese and Western cuisines. To the best of our knowledge, our work is the first attempt to generate Chinese food images using only food names.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
殊桐完成签到,获得积分10
1秒前
XuanbinLiu关注了科研通微信公众号
2秒前
qinchuanniu发布了新的文献求助10
2秒前
2秒前
夏语完成签到 ,获得积分20
3秒前
biubiu26完成签到,获得积分10
3秒前
微笑高山完成签到 ,获得积分10
4秒前
渣渣慧完成签到,获得积分10
4秒前
万年wannian完成签到,获得积分10
5秒前
5秒前
biubiu26发布了新的文献求助10
6秒前
ding应助xx采纳,获得10
7秒前
7秒前
酱酱发布了新的文献求助10
7秒前
lee完成签到 ,获得积分10
9秒前
Coldpal完成签到,获得积分10
10秒前
Orange应助海棠先雪采纳,获得10
10秒前
Yzz完成签到,获得积分10
10秒前
money完成签到 ,获得积分10
11秒前
yyy完成签到,获得积分10
11秒前
zhouleiwang发布了新的文献求助10
12秒前
田様应助Anson采纳,获得10
12秒前
12秒前
13秒前
13秒前
14秒前
15秒前
酱酱完成签到,获得积分10
17秒前
18秒前
Wjh123456完成签到,获得积分10
19秒前
KING完成签到,获得积分10
19秒前
LeoXu完成签到,获得积分10
19秒前
寒冷友梅发布了新的文献求助10
20秒前
20秒前
22秒前
22秒前
科研助手6应助cc采纳,获得10
22秒前
无辜跳跳糖完成签到,获得积分20
23秒前
xy完成签到 ,获得积分10
25秒前
Chairs完成签到,获得积分0
27秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3860780
求助须知:如何正确求助?哪些是违规求助? 3403128
关于积分的说明 10633272
捐赠科研通 3126154
什么是DOI,文献DOI怎么找? 1723797
邀请新用户注册赠送积分活动 830225
科研通“疑难数据库(出版商)”最低求助积分说明 778993