Machine learning and population pharmacokinetics: a hybrid approach for optimizing vancomycin therapy in sepsis patients

加药 万古霉素 均方误差 平均绝对百分比误差 败血症 贝叶斯概率 医学 统计 曲线下面积 人口 药代动力学 数学 内科学 生物 环境卫生 细菌 遗传学 金黄色葡萄球菌
作者
Keyu Chen,Chuhui Wang,Wei Yu,Sai Ma,Wei-Jia Huang,Yalin Dong,Yan Wang
出处
期刊:Microbiology spectrum [American Society for Microbiology]
标识
DOI:10.1128/spectrum.00499-25
摘要

ABSTRACT Predicting vancomycin exposure is essential for optimizing dosing regimens in sepsis patients. While population pharmacokinetic (PPK) models are commonly used, their performance is limited. Machine learning (ML) models offer advantages over PPK models, but it remains unclear which model—PPK, Bayesian, ML, or hybrid PPK-ML—is best for predicting vancomycin exposure across different clinical scenarios in sepsis patients. This study compares the performance of these models in predicting the 24 hour area under the blood concentration curve (AUC 24 ) to support precision dosing in sepsis care. Data from sepsis patients treated with intravenous vancomycin were sourced from the MIMIC-IV database. The data set was split into training and testing sets, and four models—PPK, Bayesian, ML, and hybrid—were developed. In the testing set, AUC 24 was predicted using all models, and performance was evaluated using mean absolute error, mean squared error, root mean squared error, mean absolute percentage error (MAPE), and R². A total of 4,059 patients were included. In the absence of vancomycin concentration data, the hybrid model outperformed both PPK and Bayesian models, with MAPE improvements of 58% and 17%, respectively. When vancomycin concentration data were available, the Bayesian model demonstrated the best performance (MAPE: 13.37% vs 68.17%, 34.17%, and 28.52% for PPK, Random Forest, and hybrid models). The hybrid model is recommended to predict AUC 24 when concentration data were unavailable, while the Bayesian model should be used when concentrations were available, offering robust strategies for precise vancomycin dosing in sepsis patients. IMPORTANCE This study evaluates and compares the performance of four models—PPK, Bayesian, ML, and hybrid PPK-ML—in predicting vancomycin exposure (AUC 24 ) in sepsis patients using real-world data from the MIMIC-IV database. These results underscore the importance of selecting appropriate models based on the availability of concentration data, providing valuable guidance for precision dosing strategies in sepsis care. This work contributes to advancing personalized vancomycin therapy, optimizing dosing regimens, and improving clinical outcomes in sepsis patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小富发布了新的文献求助10
1秒前
小葵完成签到,获得积分10
2秒前
yuaner发布了新的文献求助10
2秒前
初光发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
jay发布了新的文献求助10
4秒前
4秒前
刻苦绮露发布了新的文献求助30
5秒前
Lucas应助狸子采纳,获得30
6秒前
8秒前
七七发布了新的文献求助10
8秒前
搜集达人应助小富采纳,获得10
10秒前
11秒前
Luckqi6688完成签到,获得积分10
11秒前
我是老大应助司空若云采纳,获得10
11秒前
Under完成签到,获得积分10
11秒前
飘逸的傲霜完成签到 ,获得积分10
11秒前
余味应助快乐老太采纳,获得10
12秒前
12秒前
要减肥的卷心菜完成签到,获得积分10
12秒前
12秒前
shangx发布了新的文献求助10
12秒前
12秒前
CokeColala发布了新的文献求助10
13秒前
赘婿应助刻苦绮露采纳,获得10
15秒前
胖心怡发布了新的文献求助10
15秒前
15秒前
16秒前
peng发布了新的文献求助10
17秒前
暴打小赵发布了新的文献求助10
17秒前
17秒前
小闵发布了新的文献求助10
18秒前
爆米花应助西梅采纳,获得10
19秒前
lvsehx完成签到,获得积分10
20秒前
21秒前
21秒前
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795197
求助须知:如何正确求助?哪些是违规求助? 3340150
关于积分的说明 10299013
捐赠科研通 3056688
什么是DOI,文献DOI怎么找? 1677141
邀请新用户注册赠送积分活动 805224
科研通“疑难数据库(出版商)”最低求助积分说明 762397