Machine learning and population pharmacokinetics: a hybrid approach for optimizing vancomycin therapy in sepsis patients

加药 万古霉素 均方误差 平均绝对百分比误差 败血症 贝叶斯概率 医学 统计 曲线下面积 人口 药代动力学 数学 内科学 生物 细菌 环境卫生 金黄色葡萄球菌 遗传学
作者
Keyu Chen,Chuhui Wang,Wei Yu,Sai Ma,Wei-Jia Huang,Yalin Dong,Yan Wang
出处
期刊:Microbiology spectrum [American Society for Microbiology]
标识
DOI:10.1128/spectrum.00499-25
摘要

ABSTRACT Predicting vancomycin exposure is essential for optimizing dosing regimens in sepsis patients. While population pharmacokinetic (PPK) models are commonly used, their performance is limited. Machine learning (ML) models offer advantages over PPK models, but it remains unclear which model—PPK, Bayesian, ML, or hybrid PPK-ML—is best for predicting vancomycin exposure across different clinical scenarios in sepsis patients. This study compares the performance of these models in predicting the 24 hour area under the blood concentration curve (AUC 24 ) to support precision dosing in sepsis care. Data from sepsis patients treated with intravenous vancomycin were sourced from the MIMIC-IV database. The data set was split into training and testing sets, and four models—PPK, Bayesian, ML, and hybrid—were developed. In the testing set, AUC 24 was predicted using all models, and performance was evaluated using mean absolute error, mean squared error, root mean squared error, mean absolute percentage error (MAPE), and R². A total of 4,059 patients were included. In the absence of vancomycin concentration data, the hybrid model outperformed both PPK and Bayesian models, with MAPE improvements of 58% and 17%, respectively. When vancomycin concentration data were available, the Bayesian model demonstrated the best performance (MAPE: 13.37% vs 68.17%, 34.17%, and 28.52% for PPK, Random Forest, and hybrid models). The hybrid model is recommended to predict AUC 24 when concentration data were unavailable, while the Bayesian model should be used when concentrations were available, offering robust strategies for precise vancomycin dosing in sepsis patients. IMPORTANCE This study evaluates and compares the performance of four models—PPK, Bayesian, ML, and hybrid PPK-ML—in predicting vancomycin exposure (AUC 24 ) in sepsis patients using real-world data from the MIMIC-IV database. These results underscore the importance of selecting appropriate models based on the availability of concentration data, providing valuable guidance for precision dosing strategies in sepsis care. This work contributes to advancing personalized vancomycin therapy, optimizing dosing regimens, and improving clinical outcomes in sepsis patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赎罪发布了新的文献求助10
1秒前
xiaogao完成签到,获得积分20
2秒前
www完成签到,获得积分20
2秒前
Ari_Kun完成签到 ,获得积分10
3秒前
DrKorla完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
Moro发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
6秒前
nmqiang发布了新的文献求助10
7秒前
范云凯发布了新的文献求助10
7秒前
背后枕头完成签到,获得积分10
8秒前
科研通AI5应助不一采纳,获得10
8秒前
xiaogao发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助30
9秒前
9秒前
wongtinlun发布了新的文献求助10
9秒前
penguins发布了新的文献求助10
9秒前
LWERTH完成签到,获得积分10
9秒前
10秒前
10秒前
所所应助害羞的盼海采纳,获得10
11秒前
11秒前
focus完成签到 ,获得积分10
11秒前
Akim应助cola采纳,获得10
11秒前
俊逸的代曼发布了新的文献求助150
12秒前
英姑应助田立岩采纳,获得10
12秒前
13秒前
mayamaya完成签到,获得积分10
13秒前
扁桃体不发言完成签到,获得积分10
14秒前
ming完成签到 ,获得积分10
15秒前
刘玉欣完成签到 ,获得积分10
15秒前
是媛媛完成签到,获得积分10
15秒前
恩雅发布了新的文献求助10
16秒前
土豆发布了新的文献求助10
16秒前
17秒前
高分求助中
Organic Chemistry 10086
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Metals, Minerals, and Society 400
International socialism & Australian labour : the Left in Australia, 1919-1939 400
Bulletin de la Societe Chimique de France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4288581
求助须知:如何正确求助?哪些是违规求助? 3815767
关于积分的说明 11950339
捐赠科研通 3460447
什么是DOI,文献DOI怎么找? 1897954
邀请新用户注册赠送积分活动 946369
科研通“疑难数据库(出版商)”最低求助积分说明 849769