Machine-learning analysis of opioid use disorder informed by MOR, DOR, KOR, NOR and ZOR-based interactome networks

阿片类药物使用障碍 机器学习 药物数据库 类阿片 药理学 丁丙诺啡 医学 人工智能 心理学 药品 计算机科学 受体 内科学
作者
Hongsong Feng,Rana Elladki,Jiang Jian,Guo‐Wei Wei
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:157: 106745-106745 被引量:10
标识
DOI:10.1016/j.compbiomed.2023.106745
摘要

Opioid use disorder (OUD) continuously poses major public health challenges and social implications worldwide with dramatic rise of opioid dependence leading to potential abuse. Despite that a few pharmacological agents have been approved for OUD treatment, the efficacy of said agents for OUD requires further improvement in order to provide safer and more effective pharmacological and psychosocial treatments. Preferable therapeutic treatments of OUD rely on the advances in understanding the neurobiological mechanism of opioid dependence. Proteins including mu, delta, kappa, nociceptin, and zeta opioid receptors are the direct targets of opioids. Each receptor has a large protein-protein interaction (PPI) network, that behaves differently when subjected to various treatments, thus increasing the complexity in the drug development process for an effective opioid addiction treatment. The report below analyzes the work by presenting a PPI-network informed machine-learning study of OUD. We have examined more than 500 proteins in the five opioid receptor networks and subsequently collected 74 inhibitor datasets. Machine learning models were constructed by pairing gradient boosting decision tree (GBDT) algorithm with two advanced natural language processing (NLP)-based molecular fingerprints. With these models, we systematically carried out evaluations of screening and repurposing potential of drug candidates for four opioid receptors. In addition, absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties were also considered in the screening of potential drug candidates. Our study can be a valuable and promising tool of pharmacological development for OUD treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yyds完成签到,获得积分10
1秒前
URB7完成签到,获得积分10
2秒前
233发布了新的文献求助10
2秒前
小牙医发布了新的文献求助10
2秒前
李鱼丸完成签到,获得积分10
3秒前
Mao发布了新的文献求助10
4秒前
canvasss完成签到,获得积分10
5秒前
miya完成签到,获得积分10
6秒前
7秒前
橘子海完成签到 ,获得积分10
7秒前
8秒前
卷aaaa完成签到,获得积分10
8秒前
不着四六的岁月完成签到,获得积分10
9秒前
佳无夜完成签到,获得积分10
9秒前
9秒前
黑驴发布了新的文献求助10
10秒前
10秒前
可爱的函函应助Utopia采纳,获得80
11秒前
善学以致用应助ck采纳,获得10
12秒前
爆米花应助吴巷玉采纳,获得10
12秒前
教授发布了新的文献求助10
13秒前
科研通AI5应助微笑的傲旋采纳,获得10
13秒前
Wangpangzi发布了新的文献求助10
13秒前
14秒前
lemono_o完成签到,获得积分10
14秒前
14秒前
15秒前
开心的城完成签到,获得积分10
15秒前
shamy夫妇完成签到,获得积分10
16秒前
16秒前
17秒前
健忘的念蕾完成签到,获得积分10
18秒前
gj发布了新的文献求助10
19秒前
Stella发布了新的文献求助10
19秒前
20秒前
小凉完成签到 ,获得积分10
20秒前
独狼完成签到 ,获得积分10
20秒前
21秒前
21秒前
22秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801630
求助须知:如何正确求助?哪些是违规求助? 3347454
关于积分的说明 10333663
捐赠科研通 3063605
什么是DOI,文献DOI怎么找? 1681955
邀请新用户注册赠送积分活动 807820
科研通“疑难数据库(出版商)”最低求助积分说明 763921