已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Bi-Level Implicit Semantic Data Augmentation for Vehicle Re-Identification

计算机科学 稳健性(进化) 判别式 人工智能 观点 利用 机器学习 特征提取 分割 数据挖掘 模式识别(心理学) 艺术 生物化学 化学 计算机安全 视觉艺术 基因
作者
Wei Li,Haiyun Guo,Honghui Dong,Ming Tang,Yue Zhou,Jinqiao Wang
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4364-4376 被引量:4
标识
DOI:10.1109/tits.2023.3234644
摘要

Vehicle re-identification (Re-ID) aims at finding the target vehicle identity from multi-camera surveillance videos, which plays an important role in the intelligent transportation system (ITS). It suffers from the subtle discrepancy among vehicles from the same vehicle model and large variation across different viewpoints of the same vehicle. To enhance the robustness of Re-ID models, many methods exploit additional detection or segmentation models to extract discriminative local features. Some others employ data-driven methods to enrich the diversity of the training data, such as the data augmentation and 3D-based data generation, so that the Re-ID model can obtain stronger robustness against intra-class variations. However, these methods either rely on extra annotations or greatly increase the computational cost. In this paper, we propose the Bi-level Implicit semantic Data Augmentation (BIDA) framework to solve this problem from two aspects. (1) We implicitly augment the images semantically in the feature space according to the identity-level and superclass-level intra-class variations, which can generate more diverse semantic augmentations beyond the intra-identity variations. (2) We introduce the similarity ranking constraints on the augmented training set by extending the sample-wise triplet loss to the distribution-wise one, which can effectively reduce meaningless semantic transformations and improve the discrimination of the feature. We conduct extensive experiments on VeRi-776, VehicleID and Cityflow benchmarks to reveal the effectiveness of our method. And we achieve new state-of-the-art performance on VeRi-776.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加菲丰丰举报求助违规成功
1秒前
望除举报求助违规成功
1秒前
HEAUBOOK举报求助违规成功
1秒前
1秒前
科研女仆完成签到 ,获得积分10
1秒前
怡书陈完成签到 ,获得积分10
1秒前
1秒前
媛媛发布了新的文献求助10
2秒前
工大搬砖战神完成签到,获得积分10
5秒前
5秒前
6秒前
段玉杰发布了新的文献求助10
8秒前
开心夏真完成签到,获得积分10
12秒前
可爱的函函应助刘燕采纳,获得10
13秒前
nuonuo发布了新的文献求助30
13秒前
1461完成签到 ,获得积分10
13秒前
加菲丰丰举报求助违规成功
14秒前
望除举报求助违规成功
14秒前
HEAUBOOK举报求助违规成功
14秒前
14秒前
serena完成签到,获得积分10
15秒前
17秒前
17秒前
如约而至完成签到 ,获得积分10
18秒前
Perion完成签到 ,获得积分10
19秒前
虚幻沛菡完成签到 ,获得积分10
19秒前
花开发布了新的文献求助10
20秒前
禹卓发布了新的文献求助10
21秒前
22秒前
hhhhhhhhhh完成签到 ,获得积分10
23秒前
24秒前
25秒前
JING发布了新的文献求助10
25秒前
乐乐应助nuonuo采纳,获得10
26秒前
Yummy发布了新的文献求助10
27秒前
刘燕发布了新的文献求助10
28秒前
紧张的似狮完成签到 ,获得积分10
31秒前
情怀应助少7一点8采纳,获得10
33秒前
小凯完成签到 ,获得积分10
34秒前
100完成签到,获得积分10
35秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795454
求助须知:如何正确求助?哪些是违规求助? 3340458
关于积分的说明 10300316
捐赠科研通 3057032
什么是DOI,文献DOI怎么找? 1677356
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491