A social theory-enhanced graph representation learning framework for multitask prediction of drug–drug interactions

药物数据库 计算机科学 多任务学习 杠杆(统计) 图形 人工智能 机器学习 特征学习 注意力网络 任务(项目管理) 理论计算机科学 药品 药理学 医学 经济 管理
作者
Jian Feng,Shao‐Wu Zhang,Yi-Yang Feng,Qingqing Zhang,Minghui Shi,Jian‐Yu Shi
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:24 (1) 被引量:8
标识
DOI:10.1093/bib/bbac602
摘要

Current machine learning-based methods have achieved inspiring predictions in the scenarios of mono-type and multi-type drug-drug interactions (DDIs), but they all ignore enhancive and depressive pharmacological changes triggered by DDIs. In addition, these pharmacological changes are asymmetric since the roles of two drugs in an interaction are different. More importantly, these pharmacological changes imply significant topological patterns among DDIs. To address the above issues, we first leverage Balance theory and Status theory in social networks to reveal the topological patterns among directed pharmacological DDIs, which are modeled as a signed and directed network. Then, we design a novel graph representation learning model named SGRL-DDI (social theory-enhanced graph representation learning for DDI) to realize the multitask prediction of DDIs. SGRL-DDI model can capture the task-joint information by integrating relation graph convolutional networks with Balance and Status patterns. Moreover, we utilize task-specific deep neural networks to perform two tasks, including the prediction of enhancive/depressive DDIs and the prediction of directed DDIs. Based on DDI entries collected from DrugBank, the superiority of our model is demonstrated by the comparison with other state-of-the-art methods. Furthermore, the ablation study verifies that Balance and Status patterns help characterize directed pharmacological DDIs, and that the joint of two tasks provides better DDI representations than individual tasks. Last, we demonstrate the practical effectiveness of our model by a version-dependent test, where 88.47 and 81.38% DDI out of newly added entries provided by the latest release of DrugBank are validated in two predicting tasks respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cwy完成签到,获得积分10
1秒前
Herman完成签到 ,获得积分10
2秒前
sciforce完成签到,获得积分10
4秒前
5秒前
牧羊完成签到,获得积分10
5秒前
畅快的长颈鹿完成签到,获得积分10
5秒前
斯文败类应助杜兰特采纳,获得10
5秒前
hanahuang完成签到,获得积分10
6秒前
爱教育的张月亮完成签到,获得积分10
8秒前
充电宝应助叶95采纳,获得10
8秒前
nn发布了新的文献求助10
9秒前
10秒前
11秒前
12秒前
14秒前
15秒前
外向蜡烛发布了新的文献求助10
15秒前
脑洞疼应助shencan采纳,获得10
15秒前
白白完成签到 ,获得积分10
16秒前
杜兰特发布了新的文献求助10
17秒前
大个应助牧羊采纳,获得10
19秒前
tenacity完成签到,获得积分10
20秒前
宋宋完成签到 ,获得积分10
20秒前
21秒前
22秒前
22秒前
28秒前
shencan发布了新的文献求助10
28秒前
大模型应助能干的鞅采纳,获得10
30秒前
xdd驳回了yydragen应助
31秒前
33秒前
35秒前
小猪发布了新的文献求助10
36秒前
叶95发布了新的文献求助10
36秒前
37秒前
田様应助牛牛眉目采纳,获得10
37秒前
只吃煎饼不卷葱完成签到,获得积分10
38秒前
万能图书馆应助zqx采纳,获得10
38秒前
香蕉觅云应助阡陌采纳,获得10
39秒前
41秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966344
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159558
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804361