SmartCADD: AI-QM Empowered Drug Discovery Platform with Explainability

工作流程 计算机科学 药效团 虚拟筛选 数据科学 药物发现 人工智能 纳米技术 生物信息学 生物 数据库 材料科学
作者
Ayesh Madushanka,Eli Laird,Corey Clark,Elfi Kraka
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:64 (17): 6799-6813 被引量:2
标识
DOI:10.1021/acs.jcim.4c00720
摘要

Artificial intelligence (AI) has emerged as a pivotal force in enhancing productivity across various sectors, with its impact being profoundly felt within the pharmaceutical and biotechnology domains. Despite AI's rapid adoption, its integration into scientific research faces resistance due to myriad challenges: the opaqueness of AI models, the intricate nature of their implementation, and the issue of data scarcity. In response to these impediments, we introduce SmartCADD, an innovative, open-source virtual screening platform that combines deep learning, computer-aided drug design (CADD), and quantum mechanics methodologies within a user-friendly Python framework. SmartCADD is engineered to streamline the construction of comprehensive virtual screening workflows that incorporate a variety of formerly independent techniques─spanning ADMET property predictions, de novo 2D and 3D pharmacophore modeling, molecular docking, to the integration of explainable AI mechanisms. This manuscript highlights the foundational principles, key functionalities, and the unique integrative approach of SmartCADD. Furthermore, we demonstrate its efficacy through a case study focused on the identification of promising lead compounds for HIV inhibition. By democratizing access to advanced AI and quantum mechanics tools, SmartCADD stands as a catalyst for progress in pharmaceutical research and development, heralding a new era of innovation and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简单十三发布了新的文献求助100
3秒前
ikun完成签到,获得积分10
3秒前
小鹿5460发布了新的文献求助200
4秒前
QS完成签到,获得积分10
5秒前
失眠醉易应助我姓王采纳,获得20
6秒前
元谷雪发布了新的文献求助10
9秒前
勤劳的以蓝完成签到,获得积分10
12秒前
13秒前
小六完成签到,获得积分10
14秒前
koutianle完成签到 ,获得积分10
15秒前
15秒前
大模型应助Phi.Wang采纳,获得10
17秒前
JamesPei应助小羊睡饱了采纳,获得10
17秒前
落叶捎来讯息完成签到 ,获得积分10
20秒前
研友_VZG7GZ应助Bressanone采纳,获得10
20秒前
时光完成签到,获得积分10
21秒前
呜啦啦啦完成签到,获得积分10
23秒前
24秒前
头头完成签到,获得积分10
25秒前
李新光完成签到 ,获得积分10
25秒前
乐乐应助Darren采纳,获得10
25秒前
27秒前
ding应助cure采纳,获得20
28秒前
小熊发布了新的文献求助10
28秒前
Luchy完成签到 ,获得积分10
30秒前
成就书雪完成签到,获得积分0
31秒前
Phi.Wang发布了新的文献求助10
32秒前
顺利毕业发布了新的文献求助10
32秒前
35秒前
元谷雪发布了新的文献求助10
36秒前
kento发布了新的文献求助30
39秒前
搜集达人应助安详芝麻采纳,获得10
41秒前
NN应助安静的睿渊采纳,获得10
41秒前
42秒前
45秒前
45秒前
ChenWei给ChenWei的求助进行了留言
46秒前
顺利毕业完成签到,获得积分20
47秒前
47秒前
云烟成雨完成签到,获得积分10
47秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Fatigue of Materials and Structures 200
Enhance the effectiveness of affiliate marketing on Tiktok for young people 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831479
求助须知:如何正确求助?哪些是违规求助? 3373689
关于积分的说明 10481025
捐赠科研通 3093675
什么是DOI,文献DOI怎么找? 1702910
邀请新用户注册赠送积分活动 819201
科研通“疑难数据库(出版商)”最低求助积分说明 771307