亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrative Modeling of Signaling Network Dynamics Identifies Cell Type-selective Therapeutic Strategies for FGFR4-driven Cancers

癌症研究 计算生物学 动力学(音乐) 癌症 生物 医学 内科学 心理学 教育学
作者
Sung‐Young Shin,Nicole J. Chew,Milad Ghomlaghi,Anderly C. Chüeh,Yunhui Jeong,Lan K. Nguyen,Roger J. Daly
出处
期刊:Cancer Research [American Association for Cancer Research]
卷期号:84 (19): 3296-3309 被引量:1
标识
DOI:10.1158/0008-5472.can-23-3409
摘要

Oncogenic FGFR4 signaling represents a potential therapeutic target in various cancer types, including triple-negative breast cancer and hepatocellular carcinoma. However, resistance to FGFR4 single-agent therapy remains a major challenge, emphasizing the need for effective combinatorial treatments. Our study sought to develop a comprehensive computational model of FGFR4 signaling and to provide network-level insights into resistance mechanisms driven by signaling dynamics. An integrated approach, combining computational network modeling with experimental validation, uncovered potent AKT reactivation following FGFR4 targeting in triple-negative breast cancer cells. Analyzing the effects of cotargeting specific network nodes by systematically simulating the model predicted synergy of cotargeting FGFR4 and AKT or specific ErbB kinases, which was subsequently confirmed through experimental validation; however, cotargeting FGFR4 and PI3K was not synergistic. Protein expression data from hundreds of cancer cell lines was incorporated to adapt the model to diverse cellular contexts. This revealed that although AKT rebound was common, it was not a general phenomenon. For example, ERK reactivation occurred in certain cell types, including an FGFR4-driven hepatocellular carcinoma cell line, in which there is a synergistic effect of cotargeting FGFR4 and MEK but not AKT. In summary, this study offers key insights into drug-induced network remodeling and the role of protein expression heterogeneity in targeted therapy responses. These findings underscore the utility of computational network modeling for designing cell type-selective combination therapies and enhancing precision cancer treatment. Significance: Computational predictive modeling of signaling networks can decipher mechanisms of cancer cell resistance to targeted therapies and enable identification of more effective cancer type-specific combination treatment strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Foxjker完成签到 ,获得积分10
2秒前
幽默尔蓝完成签到,获得积分10
2秒前
小胡爱科研完成签到 ,获得积分10
4秒前
4秒前
sandy发布了新的文献求助10
5秒前
Lyl完成签到 ,获得积分10
7秒前
yao发布了新的文献求助10
8秒前
9秒前
毛毛弟完成签到 ,获得积分10
11秒前
阿腾发布了新的文献求助10
11秒前
朕要读三千文献完成签到,获得积分10
14秒前
NexusExplorer应助Margarita采纳,获得10
16秒前
不吃香菜完成签到,获得积分10
18秒前
岸在海的深处完成签到 ,获得积分10
26秒前
MchemG完成签到,获得积分0
32秒前
35秒前
Simoody应助yao采纳,获得10
37秒前
Margarita发布了新的文献求助10
42秒前
光亮静槐完成签到 ,获得积分10
43秒前
lige完成签到 ,获得积分10
46秒前
善学以致用应助浪里白条采纳,获得10
49秒前
56秒前
May发布了新的文献求助30
1分钟前
风华正茂完成签到,获得积分10
1分钟前
动听安筠完成签到 ,获得积分10
1分钟前
李李原上草完成签到 ,获得积分10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
FashionBoy应助科研通管家采纳,获得10
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
Akim应助科研通管家采纳,获得10
1分钟前
zho应助科研通管家采纳,获得10
1分钟前
1分钟前
虚心的幼晴完成签到,获得积分20
1分钟前
子月之路完成签到,获得积分10
1分钟前
晓书完成签到 ,获得积分10
1分钟前
May完成签到,获得积分10
1分钟前
无花果应助涨涨涨采纳,获得10
1分钟前
科研小狗完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
NK Cell Receptors: Advances in Cell Biology and Immunology by Colton Williams (Editor) 200
Effect of clapping movement with groove rhythm on executive function: focusing on audiomotor entrainment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827132
求助须知:如何正确求助?哪些是违规求助? 3369487
关于积分的说明 10456400
捐赠科研通 3089248
什么是DOI,文献DOI怎么找? 1699710
邀请新用户注册赠送积分活动 817497
科研通“疑难数据库(出版商)”最低求助积分说明 770251