已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Integrating spatial transcriptomics and bulk RNA-seq: predicting gene expression with enhanced resolution through graph attention networks

转录组 计算生物学 基因表达 乳腺癌 计算机科学 RNA序列 图形 空间分析 基因 生物 癌症 数据挖掘 遗传学 理论计算机科学 地理 遥感
作者
Sudipto Baul,Khandakar Tanvir Ahmed,Qibing Jiang,Guangyu Wang,Qian Li,Jeongsik Yong,Wei Zhang
出处
期刊:Briefings in Bioinformatics [Oxford University Press]
卷期号:25 (4) 被引量:6
标识
DOI:10.1093/bib/bbae316
摘要

Spatial transcriptomics data play a crucial role in cancer research, providing a nuanced understanding of the spatial organization of gene expression within tumor tissues. Unraveling the spatial dynamics of gene expression can unveil key insights into tumor heterogeneity and aid in identifying potential therapeutic targets. However, in many large-scale cancer studies, spatial transcriptomics data are limited, with bulk RNA-seq and corresponding Whole Slide Image (WSI) data being more common (e.g. TCGA project). To address this gap, there is a critical need to develop methodologies that can estimate gene expression at near-cell (spot) level resolution from existing WSI and bulk RNA-seq data. This approach is essential for reanalyzing expansive cohort studies and uncovering novel biomarkers that have been overlooked in the initial assessments. In this study, we present STGAT (Spatial Transcriptomics Graph Attention Network), a novel approach leveraging Graph Attention Networks (GAT) to discern spatial dependencies among spots. Trained on spatial transcriptomics data, STGAT is designed to estimate gene expression profiles at spot-level resolution and predict whether each spot represents tumor or non-tumor tissue, especially in patient samples where only WSI and bulk RNA-seq data are available. Comprehensive tests on two breast cancer spatial transcriptomics datasets demonstrated that STGAT outperformed existing methods in accurately predicting gene expression. Further analyses using the TCGA breast cancer dataset revealed that gene expression estimated from tumor-only spots (predicted by STGAT) provides more accurate molecular signatures for breast cancer sub-type and tumor stage prediction, and also leading to improved patient survival and disease-free analysis. Availability: Code is available at https://github.com/compbiolabucf/STGAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kingjames完成签到,获得积分10
1秒前
WWW发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
大善人完成签到,获得积分10
4秒前
领导范儿应助东山道友采纳,获得10
5秒前
Galaxy8发布了新的文献求助30
6秒前
可乐不加冰完成签到 ,获得积分10
6秒前
爆米花应助羊羊采纳,获得10
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
Yini应助科研通管家采纳,获得20
7秒前
今后应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
8秒前
9秒前
小枫不学医完成签到 ,获得积分10
9秒前
深情安青应助不太懂采纳,获得10
10秒前
iNk应助LTY采纳,获得20
10秒前
11秒前
12秒前
12秒前
12秒前
lulu完成签到 ,获得积分10
14秒前
14秒前
15秒前
16秒前
16秒前
不太懂完成签到,获得积分20
18秒前
SciGPT应助浪子采纳,获得10
18秒前
19秒前
19秒前
执着的冬瓜完成签到 ,获得积分10
20秒前
大金鱼完成签到 ,获得积分10
20秒前
不太懂发布了新的文献求助10
20秒前
廖梦琪完成签到 ,获得积分10
21秒前
小乌龟发布了新的文献求助10
22秒前
iNk应助HIMINNN采纳,获得20
22秒前
23秒前
科研通AI5应助zhr采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
塔里木盆地肖尔布拉克组微生物岩沉积层序与储层成因 500
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4268863
求助须知:如何正确求助?哪些是违规求助? 3799750
关于积分的说明 11909842
捐赠科研通 3446823
什么是DOI,文献DOI怎么找? 1890798
邀请新用户注册赠送积分活动 941533
科研通“疑难数据库(出版商)”最低求助积分说明 845699