已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Plug‐and‐play segment anything model improves nnUNet performance

计算机科学
作者
Yunxiang Li,Bowen Jing,Zihan Li,Jing Wang,You Zhang
出处
期刊:Medical Physics [Wiley]
卷期号:52 (2): 899-912 被引量:14
标识
DOI:10.1002/mp.17481
摘要

The automatic segmentation of medical images has widespread applications in modern clinical workflows. The Segment Anything Model (SAM), a recent development of foundational models in computer vision, has become a universal tool for image segmentation without the need for specific domain training. However, SAM's reliance on prompts necessitates human-computer interaction during the inference process. Its performance on specific domains can also be limited without additional adaptation. In contrast, traditional models like nnUNet are designed to perform segmentation tasks automatically during inference and can work well for each specific domain, but they require extensive training on domain-specific datasets. To leverage the advantages of both foundational and domain-specific models and achieve fully automated segmentation with limited training samples, we propose nnSAM, which combines the robust feature extraction capabilities of SAM with the automatic configuration abilities of nnUNet to enhance the accuracy and robustness of medical image segmentation on small datasets. We propose the nnSAM model for small sample medical image segmentation. We made optimizations for this goal via two main approaches: first, we integrated the feature extraction capabilities of SAM with the automatic configuration advantages of nnUNet, which enables robust feature extraction and domain-specific adaptation on small datasets. Second, during the training process, we designed a boundary shape supervision loss based on level set functions and curvature calculations, enabling the model to learn anatomical shape priors from limited annotation data. We conducted quantitative and qualitative assessments on the performance of our proposed method on four segmentation tasks: brain white matter, liver, lung, and heart segmentation. Our method achieved the best performance across all tasks. Specifically, in brain white matter segmentation using 20 training samples, nnSAM achieved the highest DICE score of 82.77 ( ±$\pm$ 10.12) % and the lowest average surface distance (ASD) of 1.14 ( ±$\pm$ 1.03) mm, compared to nnUNet, which had a DICE score of 79.25 ( ±$\pm$ 17.24) % and an ASD of 1.36 ( ±$\pm$ 1.63) mm. A sample size study shows that the advantage of nnSAM becomes more prominent under fewer training samples. A comprehensive evaluation of multiple small-sample segmentation tasks demonstrates significant improvements in segmentation performance by nnSAM, highlighting the vast potential of small-sample learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蛮样完成签到,获得积分10
刚刚
大师发布了新的文献求助10
刚刚
寒冷的绿真完成签到 ,获得积分10
1秒前
小米完成签到,获得积分20
3秒前
bai完成签到 ,获得积分10
3秒前
3秒前
田様应助bonhiver采纳,获得10
4秒前
初七发布了新的文献求助10
5秒前
田様应助rloooooooo采纳,获得10
5秒前
酷波er应助小熊采纳,获得10
5秒前
科研通AI2S应助暴风破晓采纳,获得10
6秒前
蜉蝣应助PRIPRO采纳,获得10
7秒前
无宇伦比应助我刚上小学采纳,获得100
8秒前
8秒前
王小树完成签到,获得积分10
9秒前
小米发布了新的文献求助10
10秒前
香蕉觅云应助初七采纳,获得10
10秒前
大笨冰发布了新的文献求助30
12秒前
12秒前
兔图图完成签到 ,获得积分10
13秒前
曾经凤灵完成签到,获得积分10
13秒前
14秒前
parrot完成签到,获得积分10
16秒前
华仔应助ang采纳,获得10
16秒前
bonhiver发布了新的文献求助10
17秒前
搜集达人应助123采纳,获得10
17秒前
20秒前
20秒前
21秒前
wmmm完成签到 ,获得积分10
21秒前
21秒前
兜有米发布了新的文献求助10
21秒前
烂漫向卉发布了新的文献求助10
22秒前
慕青应助曾经凤灵采纳,获得30
23秒前
丘比特应助5433采纳,获得10
25秒前
25秒前
PRIPRO完成签到,获得积分20
26秒前
完美世界应助青渡采纳,获得10
26秒前
26秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4526058
求助须知:如何正确求助?哪些是违规求助? 3966050
关于积分的说明 12291754
捐赠科研通 3630530
什么是DOI,文献DOI怎么找? 1998022
邀请新用户注册赠送积分活动 1034408
科研通“疑难数据库(出版商)”最低求助积分说明 923989