CroMAM: A Cross-Magnification Attention Feature Fusion Model for Predicting Genetic Status and Survival of Gliomas using Histological Images

放大倍数 特征(语言学) 人工智能 胶质瘤 计算机科学 模式识别(心理学) 胶质母细胞瘤 特征提取 医学 癌症研究 哲学 语言学
作者
Jisen Guo,Peng Xu,Yuankui Wu,Yunyun Tao,Chu Han,Jiatai Lin,Ke Zhao,Zaiyi Liu,Wenbin Liu,Cheng Lu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3431471
摘要

Predicting the gene mutation status in whole slide images (WSI) is crucial for the clinical treatment, cancer management, and research of gliomas. With advancements in CNN and Transformer algorithms, several promising models have been proposed. However, existing studies have paid little attention on fusing multi-magnification information, and the model requires processing all patches from a whole slide image. In this paper, we propose a cross-magnification attention model called CroMAM for predicting the genetic status and survival of gliomas. The CroMAM first utilizes a systematic patch extraction module to sample a subset of representative patches for downstream analysis. Next, the CroMAM applies Swin Transformer to extract local and global features from patches at different magnifications, followed by acquiring high-level features and dependencies among single-magnification patches through the application of a Vision Transformer. Subsequently, the CroMAM exchanges the integrated feature representations of different magnifications and encourage the integrated feature representations to learn the discriminative information from other magnification. Additionally, we design a cross-magnification attention analysis method to examine the effect of cross-magnification attention quantitatively and qualitatively which increases the model's explainability. To validate the performance of the model, we compare the proposed model with other multi-magnification feature fusion models on three tasks in two datasets. Extensive experiments demonstrate that the proposed model achieves state-of-the-art performance in predicting the genetic status and survival of gliomas. The implementation of the CroMAM will be publicly available upon the acceptance of this manuscript at https://github.com/GuoJisen/CroMAM.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111举报sopha求助涉嫌违规
1秒前
我是老大应助Trost采纳,获得10
1秒前
张钦奎发布了新的文献求助10
2秒前
狗蛋发布了新的文献求助10
2秒前
lijunlhc完成签到,获得积分10
2秒前
圆圆发布了新的文献求助10
2秒前
发条发布了新的文献求助10
5秒前
傲娇的棉花糖完成签到 ,获得积分10
5秒前
意兴不阑珊完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
8秒前
NexusExplorer应助张旭卓采纳,获得10
8秒前
云猫完成签到 ,获得积分10
10秒前
10秒前
10秒前
hu发布了新的文献求助10
10秒前
10秒前
LGJ完成签到,获得积分10
10秒前
千空完成签到,获得积分10
11秒前
yoowt发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
二号发布了新的文献求助10
12秒前
asdf发布了新的文献求助10
12秒前
大模型应助贪玩的万仇采纳,获得10
12秒前
13秒前
大模型应助心灵美从寒采纳,获得10
14秒前
junjun发布了新的文献求助10
14秒前
Skye完成签到,获得积分20
14秒前
WMT完成签到 ,获得积分10
14秒前
15秒前
千空发布了新的文献求助10
15秒前
wise111发布了新的文献求助10
16秒前
16秒前
16秒前
学术达人应助二号采纳,获得20
16秒前
典雅碧空应助呼呼兔采纳,获得10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947469
求助须知:如何正确求助?哪些是违规求助? 3492682
关于积分的说明 11066299
捐赠科研通 3223567
什么是DOI,文献DOI怎么找? 1781557
邀请新用户注册赠送积分活动 866373
科研通“疑难数据库(出版商)”最低求助积分说明 800332