Predicting angiographic coronary artery disease using machine learning and high-frequency QRS

心脏病学 冠状动脉疾病 内科学 医学 QRS波群 健康信息学 公共卫生 病理
作者
Jiajia Zhang,Heng Zhang,Ting Wei,Pinfang Kang,Bi Tang,Hongju Wang
出处
期刊:BMC Medical Informatics and Decision Making [BioMed Central]
卷期号:24 (1)
标识
DOI:10.1186/s12911-024-02620-1
摘要

Exercise stress ECG is a common diagnostic test for stable coronary artery disease, but its sensitivity and specificity need to be further improved. In this paper, we construct a machine learning model for the prediction of angiographic coronary artery disease by HFQRS analysis of cycling exercise ECG. This study prospectively included 140 inpatients and 59 healthy volunteers undergoing cycling exercise ECG. The CHD group (N=104) and non-CHD group (N=95) were determined by coronary angiography gold standard. Automated HF QRS analysis was performed by the blinded method. The coronary group was predominantly male, with a higher prevalence of age, BMI, hypertension, and diabetes than the non-coronary group ( $$P<0.001$$ ), higher lipid levels in the coronary group ( $$P<0.005$$ ), significantly longer QRS duration during exercise testing ( $$P<0.005$$ ), more positive leads ( $$P<0.001$$ ), and a greater proportion of significant changes in HFQRS ( $$P<0.001$$ ). Age, Gender, Hypertension, Diabetes, and HF QRS Conclusions were screened by correlation analysis and multifactorial retrospective analysis to construct the machine learning models of the XGBoost Classifier, Logistic Regression, LightGBM Classifier, RandomForest Classifier, Artificial Neural Network and Support Vector Machine, respectively. Male, elderly, with hypertension, diabetes mellitus, and positive exercise stress test HFQRS conclusions suggested a high risk of CHD. The best performance of the Logistic Regression model was compared, and a column line graph for assessing the risk of CHD was further developed and validated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
CodeCraft应助Feifei133采纳,获得10
1秒前
1秒前
2秒前
asdghr完成签到,获得积分10
2秒前
Arthur完成签到 ,获得积分10
5秒前
李健的小迷弟应助qianqiu采纳,获得10
6秒前
申哈哈发布了新的文献求助10
8秒前
9秒前
11秒前
11秒前
13秒前
14秒前
15秒前
15秒前
平常平松发布了新的文献求助10
18秒前
Winston发布了新的文献求助10
18秒前
19秒前
阿辉发布了新的文献求助10
19秒前
allrubbish完成签到,获得积分10
21秒前
21秒前
22秒前
Doc_Ocean完成签到,获得积分10
22秒前
不安的妙之完成签到,获得积分10
23秒前
11完成签到 ,获得积分10
24秒前
27秒前
齐桉完成签到 ,获得积分10
28秒前
科研通AI2S应助果果采纳,获得10
28秒前
海格完成签到,获得积分10
29秒前
29秒前
123发布了新的文献求助10
32秒前
33秒前
33秒前
平常平松完成签到,获得积分20
33秒前
沉甸甸完成签到,获得积分10
34秒前
35秒前
科研通AI5应助Guoqiang采纳,获得10
37秒前
眯眯眼的世界应助Ryan采纳,获得10
38秒前
39秒前
nenoaowu发布了新的文献求助10
39秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782096
求助须知:如何正确求助?哪些是违规求助? 3327562
关于积分的说明 10232109
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670006
邀请新用户注册赠送积分活动 799585
科研通“疑难数据库(出版商)”最低求助积分说明 758825