Knowledge-aware Multisite Adaptive Graph Transformer for Brain Disorder Diagnosis

计算机科学 变压器 人工智能 神经影像学 机器学习 神经科学 心理学 工程类 电气工程 电压
作者
Xuegang Song,Kaixiang Shu,Peng Yang,Cheng Zhao,Feng Zhou,Alejandro F. Frangi,Xiaohua Xiao,Lei Dong,Tianfu Wang,Shuqiang Wang,Baiying Lei
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tmi.2024.3453419
摘要

Brain disorder diagnosis via resting-state functional magnetic resonance imaging (rs-fMRI) is usually limited due to the complex imaging features and sample size. For brain disorder diagnosis, the graph convolutional network (GCN) has achieved remarkable success by capturing interactions between individuals and the population. However, there are mainly three limitations: 1) The previous GCN approaches consider the non-imaging information in edge construction but ignore the sensitivity differences of features to non-imaging information. 2) The previous GCN approaches solely focus on establishing interactions between subjects (i.e., individuals and the population), disregarding the essential relationship between features. 3) Multisite data increase the sample size to help classifier training, but the inter-site heterogeneity limits the performance to some extent. This paper proposes a knowledge-aware multisite adaptive graph Transformer to address the above problems. First, we evaluate the sensitivity of features to each piece of non-imaging information, and then construct feature-sensitive and feature-insensitive subgraphs. Second, after fusing the above subgraphs, we integrate a Transformer module to capture the intrinsic relationship between features. Third, we design a domain adaptive GCN using multiple loss function terms to relieve data heterogeneity and to produce the final classification results. Last, the proposed framework is validated on two brain disorder diagnostic tasks. Experimental results show that the proposed framework can achieve state-of-the-art performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NN应助rabbit采纳,获得10
刚刚
科研通AI6应助rabbit采纳,获得10
刚刚
彭于晏应助rabbit采纳,获得10
刚刚
上官若男应助rabbit采纳,获得10
刚刚
乐乐应助rabbit采纳,获得10
刚刚
迪克队长发布了新的文献求助30
刚刚
刚刚
1秒前
哈基米德应助繁荣的谷蓝采纳,获得20
1秒前
1秒前
尔蝶发布了新的文献求助10
2秒前
gaoyayaaa应助jijrigr采纳,获得10
2秒前
可爱的函函应助木木木采纳,获得10
2秒前
2秒前
海棠朵朵完成签到 ,获得积分10
2秒前
筱筱发布了新的文献求助10
3秒前
lazyg5403完成签到,获得积分10
3秒前
华仔应助薛变霞采纳,获得10
3秒前
4秒前
俊俊发布了新的文献求助10
4秒前
科研通AI6应助研究侠采纳,获得30
4秒前
不配.应助Kamalika采纳,获得200
4秒前
4秒前
领导范儿应助迦佭采纳,获得10
4秒前
Yy发布了新的文献求助10
5秒前
完美世界应助高骏伟采纳,获得10
5秒前
5秒前
6秒前
chenqiumu应助wsy采纳,获得20
6秒前
小园饼干完成签到,获得积分10
6秒前
sususu完成签到,获得积分10
7秒前
hhh完成签到,获得积分10
7秒前
Lijiahe1122发布了新的文献求助10
7秒前
7秒前
fanhaomeng发布了新的文献求助10
7秒前
ddddd完成签到,获得积分10
7秒前
小青椒应助dkx采纳,获得30
7秒前
8秒前
田様应助简单的鸡翅采纳,获得10
8秒前
jay发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260499
求助须知:如何正确求助?哪些是违规求助? 4421947
关于积分的说明 13764660
捐赠科研通 4296098
什么是DOI,文献DOI怎么找? 2357222
邀请新用户注册赠送积分活动 1353594
关于科研通互助平台的介绍 1314874