清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

State of charge estimation for lithium-ion batteries using gated recurrent unit recurrent neural network and adaptive Kalman filter

卡尔曼滤波器 荷电状态 循环神经网络 扩展卡尔曼滤波器 控制理论(社会学) 人工神经网络 锂(药物) 离子 国家(计算机科学) 单位(环理论) 计算机科学 算法 物理 人工智能 数学 电池(电) 医学 内分泌学 数学教育 量子力学 功率(物理) 控制(管理)
作者
Junxiong Chen,Yu Zhang,Wenjiang Li,Weisong Cheng,Qiao Zhu
出处
期刊:Journal of energy storage [Elsevier]
卷期号:55: 105396-105396 被引量:96
标识
DOI:10.1016/j.est.2022.105396
摘要

The state of charge (SOC) is one of the most important monitoring states for the battery management system. It is still a challenge to estimate the battery SOC accurately and stably. The conventional model-based filtering methods may cause inaccurate SOC estimation in application due to the high dependence on accurate battery model. And the emerging methods based on machine learning often have the problem of estimated SOC fluctuation when the current fluctuates greatly. To solve these problems, this paper proposes a robust and efficient combined SOC estimation method, GRU-AKF, which combines the gated recurrent unit recurrent neural network (GRU-RNN) and the adaptive Kalman filter (AKF). Firstly, the GRU-RNN is used to establish a mapping model between the battery measured variables and SOC in the full temperature range, and to achieve the SOC pre-estimation. Then, an AKF is employed to filter the output SOC of the GRU-RNN for reducing the fluctuation in pre-estimated SOC. Finally, the accurate and stable estimated SOC is obtained. In the experiments, the LiFePO 4 battery datasets at various temperatures are used to validate the SOC estimation performance and generalization ability. Specifically, the root mean square error is less than 1.3% and 5.8%, and the maximum error is less than 2.2% and 7.7% for the unknown data at positive and negative temperatures, respectively. By comparing with other methods of the same type, the proposed method is demonstrated to be superior in SOC estimation performance and computation efficiency, especially it has excellent performance in initial SOC convergence ability. • A method combining neural network and Kalman filter is proposed for SOC estimation. • A GRU-RNN is used to achieve the pre-estimation of SOC. • An AKF is employed to reduce the fluctuation in pre-estimated SOC. • Comparative experiments between the method and other combined methods are designed. • The method exhibits accurate SOC estimation and excellent generalization ability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
9秒前
风趣的冬卉完成签到 ,获得积分10
14秒前
贺贺发布了新的文献求助10
16秒前
小趴蔡完成签到 ,获得积分10
20秒前
贺贺完成签到,获得积分0
22秒前
胡国伦完成签到 ,获得积分10
23秒前
32秒前
chen完成签到,获得积分10
40秒前
如意2023完成签到 ,获得积分10
50秒前
54秒前
vitamin完成签到 ,获得积分10
56秒前
wanci应助无情的琳采纳,获得10
59秒前
1分钟前
1分钟前
jojo完成签到,获得积分10
1分钟前
无情的琳发布了新的文献求助10
1分钟前
甜甜的紫菜完成签到 ,获得积分10
1分钟前
lilylwy完成签到 ,获得积分0
1分钟前
1分钟前
甜甜纸飞机完成签到 ,获得积分10
1分钟前
Pengy发布了新的文献求助10
1分钟前
Pengy完成签到,获得积分10
1分钟前
毛毛弟完成签到 ,获得积分10
1分钟前
1分钟前
打打应助Pengy采纳,获得10
1分钟前
王波完成签到 ,获得积分10
1分钟前
含糊的茹妖完成签到 ,获得积分10
1分钟前
2分钟前
彭于晏应助无情的琳采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
戚听云完成签到 ,获得积分20
2分钟前
无情的琳发布了新的文献求助10
2分钟前
jiangmi完成签到,获得积分10
3分钟前
无情的琳发布了新的文献求助10
3分钟前
平常念蕾完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
gmc完成签到 ,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5724374
求助须知:如何正确求助?哪些是违规求助? 5287586
关于积分的说明 15299851
捐赠科研通 4872291
什么是DOI,文献DOI怎么找? 2616852
邀请新用户注册赠送积分活动 1566694
关于科研通互助平台的介绍 1523657