Shale oil production prediction and fracturing optimization based on machine learning

石油工程 油页岩 粒子群优化 支持向量机 人工神经网络 致密气 超参数 致密油 水力压裂 油田 储层模拟 工程类 计算机科学 人工智能 机器学习 废物管理
作者
Chunhua Lu,Hanqiao Jiang,Yang Jinlong,Zhiqiang Wang,Miao Zhang,Junjian Li
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:217: 110900-110900 被引量:45
标识
DOI:10.1016/j.petrol.2022.110900
摘要

With the advancement of horizontal well and hydraulic fracturing technology, the development of unconventional reservoirs such as shale oil has become a hot issue in the energy field. However, production tests have demonstrated that production is non-uniformly between stages due to reservoir heterogeneity and fracturing design limitations. Therefore, it makes sense to improve fracturing design to enhance shale oil development. In this paper, we propose a computational framework for shale oil production prediction and fracturing parameters optimization that couples machine learning and particle swarm optimization (PSO). Firstly, we construct a deep neural network (DNN) model database with 841 numerical simulation data as training set and validation set, and 87 field data as test set. Secondly, the hyperparameter optimized DNN are performed to predict the production performance. And the predictive performance compares to the random forest (RF) and support vector machine (SVM). Thirdly, coupled with DNN, PSO is performed to optimize fracturing parameters. Finally, conducting rapid fracturing design based on PSO optimization results and reservoir sweet spot distribution. The results reveal that DNN exhibit best production prediction accuracy compared to RF and SVM. The generalization ability of DNN is verified by accurate prediction performance of 4 cases with extreme parameters. Optimized fracturing parameters using PSO in an actual well resulted in 2969 m3 increases in cumulative oil and 68*104 USD increases in NPV. According to the optimization results of PSO in four extreme cases, the reasonable fracturing parameters for different reservoir quality are obtained, including the number of fracturing stages and clusters, the volume of single stage fracturing fluid and proppant. Our work guides engineers in rapid fracturing design while improving shale oil development effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
独特大米完成签到,获得积分20
1秒前
1秒前
乐观文龙完成签到,获得积分10
1秒前
1秒前
2秒前
Edison发布了新的文献求助10
2秒前
乱世发布了新的文献求助10
2秒前
所所应助excellent采纳,获得10
3秒前
扎心完成签到,获得积分10
4秒前
www123qe完成签到 ,获得积分20
6秒前
果粒橙发布了新的文献求助10
6秒前
7秒前
扎心发布了新的文献求助10
7秒前
科研通AI5应助安详宛筠采纳,获得10
9秒前
9秒前
9秒前
13秒前
14秒前
excellent发布了新的文献求助10
15秒前
15秒前
回颜轻生发布了新的文献求助10
17秒前
小马甲应助乱世采纳,获得10
19秒前
19秒前
19秒前
似我发布了新的文献求助10
20秒前
zzy完成签到,获得积分10
20秒前
科研通AI2S应助wsxw130470采纳,获得10
21秒前
likey完成签到,获得积分10
22秒前
Hello应助小璐璐呀采纳,获得10
22秒前
精明半双完成签到,获得积分10
23秒前
111发布了新的文献求助10
23秒前
24秒前
跟屁虫完成签到,获得积分10
26秒前
斯文败类应助黎洛洛采纳,获得10
27秒前
深情安青应助Mrmiss666采纳,获得10
28秒前
dandan完成签到,获得积分10
28秒前
jjj应助111采纳,获得10
29秒前
无花果应助扎心采纳,获得10
30秒前
似我完成签到,获得积分10
31秒前
果粒橙关注了科研通微信公众号
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783262
求助须知:如何正确求助?哪些是违规求助? 3328579
关于积分的说明 10237185
捐赠科研通 3043691
什么是DOI,文献DOI怎么找? 1670627
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130