A multi-step approach for tongue image classification in patients with diabetes

舌头 人工智能 聚类分析 模式识别(心理学) 计算机科学 人口 医学 糖尿病 病理 环境卫生 内分泌学
作者
Jun Li,Jing-bin Huang,Tao Jiang,Liping Tu,Longtao Cui,Ji Cui,Xuxiang Ma,Xinghua Yao,Yulin Shi,Sihan Wang,Yu Wang,Jiayi Liu,Yongzhi Li,Changle Zhou,Xiaojuan Hu,Jiatuo Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 105935-105935 被引量:38
标识
DOI:10.1016/j.compbiomed.2022.105935
摘要

In China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and treatment methods are difficult to control the progress of diabetes. Traditional Chinese Medicine (TCM) has become an option for the treatment of diabetes due to its low cost, good curative effect, and good accessibility. Based on the tongue images data to realize the fine classification of the diabetic population, provide a diagnostic basis for the formulation of individualized treatment plans for diabetes, ensure the accuracy and consistency of the TCM diagnosis, and promote the objective and standardized development of TCM diagnosis. We use the TFDA-1 tongue examination instrument to collect the tongue images of the subjects. Tongue Diagnosis Analysis System (TDAS) is used to extract the TDAS features of the tongue images. Vector Quantized Variational Autoencoder (VQ-VAE) extracts VQ-VAE features from tongue images. Based on VQ-VAE features, K-means clustering tongue images. TDAS features are used to describe the differences between clusters. Vision Transformer (ViT) combined with Grad-weighted Class Activation Mapping (Grad-CAM) is used to verify the clustering results and calculate positioning diagnostic information. Based on VQ-VAE features, K-means divides the diabetic population into 4 clusters with clear boundaries. The silhouette, calinski harabasz, and davies bouldin scores are 0.391, 673.256, and 0.809, respectively. Cluster 1 had the highest Tongue Body L (TB-L) and Tongue Coating L (TC-L) and the lowest Tongue Coating Angular second moment (TC-ASM), with a pale red tongue and white coating. Cluster 2 had the highest TC-b with a yellow tongue coating. Cluster 3 had the highest TB-a with a red tongue. Group 4 had the lowest TB-L, TC-L, and TB-b and the highest Per-all with a purple tongue and the largest tongue coating area. ViT verifies the clustering results of K-means, the highest Top-1 Classification Accuracy (CA) is 87.8%, and the average CA is 84.4%. The study organically combined unsupervised learning, self-supervised learning, and supervised learning and designed a complete diabetic tongue image classification method. This method does not rely on human intervention, makes decisions based entirely on tongue image data, and achieves state-of-the-art results. Our research will help TCM deeply participate in the individualized treatment of diabetes and provide new ideas for promoting the standardization of TCM diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
haoooooooooooooo完成签到,获得积分10
2秒前
小马甲应助RG采纳,获得20
3秒前
4秒前
一只羊完成签到,获得积分10
4秒前
huangzsdy完成签到,获得积分10
6秒前
6秒前
7秒前
猪猪hero发布了新的文献求助10
8秒前
zmj发布了新的文献求助10
9秒前
9秒前
忧郁绿兰发布了新的文献求助10
11秒前
11秒前
believe发布了新的文献求助10
11秒前
Roach发布了新的文献求助10
12秒前
Panpp完成签到,获得积分10
15秒前
16秒前
JlkD发布了新的文献求助10
17秒前
下雨完成签到,获得积分10
17秒前
苦行僧完成签到 ,获得积分10
17秒前
17秒前
茶送白粥应助RussellZ采纳,获得10
20秒前
忧郁绿兰完成签到,获得积分10
20秒前
fls221完成签到,获得积分10
22秒前
Panpp发布了新的文献求助10
22秒前
23秒前
林狗发布了新的文献求助10
26秒前
共享精神应助快乐绿草采纳,获得10
27秒前
有魅力的寻梅完成签到,获得积分20
27秒前
薛之谦完成签到,获得积分10
27秒前
研友_841zXL完成签到,获得积分0
29秒前
英俊的铭应助xixixixi采纳,获得10
29秒前
hunbaekkkkk完成签到 ,获得积分10
29秒前
32秒前
量子星尘发布了新的文献求助10
38秒前
39秒前
小马甲应助舒适香露采纳,获得10
40秒前
ppp完成签到,获得积分10
43秒前
快乐翎完成签到,获得积分10
46秒前
传奇3应助zmj采纳,获得10
47秒前
Kin_L发布了新的文献求助10
47秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961032
求助须知:如何正确求助?哪些是违规求助? 3507273
关于积分的说明 11135142
捐赠科研通 3239686
什么是DOI,文献DOI怎么找? 1790338
邀请新用户注册赠送积分活动 872359
科研通“疑难数据库(出版商)”最低求助积分说明 803150