A multi-step approach for tongue image classification in patients with diabetes

舌头 人工智能 聚类分析 模式识别(心理学) 计算机科学 人口 医学 糖尿病 病理 环境卫生 内分泌学
作者
Jun Li,Jing-bin Huang,Tao Jiang,Liping Tu,Longtao Cui,Ji Cui,Xuxiang Ma,Xinghua Yao,Yulin Shi,Sihan Wang,Yu Wang,Jiayi Liu,Yongzhi Li,Changle Zhou,Xiaojuan Hu,Jiatuo Xu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:149: 105935-105935 被引量:32
标识
DOI:10.1016/j.compbiomed.2022.105935
摘要

In China, diabetes is a common, high-incidence chronic disease. Diabetes has become a severe public health problem. However, the current diagnosis and treatment methods are difficult to control the progress of diabetes. Traditional Chinese Medicine (TCM) has become an option for the treatment of diabetes due to its low cost, good curative effect, and good accessibility. Based on the tongue images data to realize the fine classification of the diabetic population, provide a diagnostic basis for the formulation of individualized treatment plans for diabetes, ensure the accuracy and consistency of the TCM diagnosis, and promote the objective and standardized development of TCM diagnosis. We use the TFDA-1 tongue examination instrument to collect the tongue images of the subjects. Tongue Diagnosis Analysis System (TDAS) is used to extract the TDAS features of the tongue images. Vector Quantized Variational Autoencoder (VQ-VAE) extracts VQ-VAE features from tongue images. Based on VQ-VAE features, K-means clustering tongue images. TDAS features are used to describe the differences between clusters. Vision Transformer (ViT) combined with Grad-weighted Class Activation Mapping (Grad-CAM) is used to verify the clustering results and calculate positioning diagnostic information. Based on VQ-VAE features, K-means divides the diabetic population into 4 clusters with clear boundaries. The silhouette, calinski harabasz, and davies bouldin scores are 0.391, 673.256, and 0.809, respectively. Cluster 1 had the highest Tongue Body L (TB-L) and Tongue Coating L (TC-L) and the lowest Tongue Coating Angular second moment (TC-ASM), with a pale red tongue and white coating. Cluster 2 had the highest TC-b with a yellow tongue coating. Cluster 3 had the highest TB-a with a red tongue. Group 4 had the lowest TB-L, TC-L, and TB-b and the highest Per-all with a purple tongue and the largest tongue coating area. ViT verifies the clustering results of K-means, the highest Top-1 Classification Accuracy (CA) is 87.8%, and the average CA is 84.4%. The study organically combined unsupervised learning, self-supervised learning, and supervised learning and designed a complete diabetic tongue image classification method. This method does not rely on human intervention, makes decisions based entirely on tongue image data, and achieves state-of-the-art results. Our research will help TCM deeply participate in the individualized treatment of diabetes and provide new ideas for promoting the standardization of TCM diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HEIKU应助纪鹏飞采纳,获得10
2秒前
Xu关注了科研通微信公众号
4秒前
5秒前
东邪西毒加任我行完成签到,获得积分10
7秒前
bc应助rrrrroxie采纳,获得40
8秒前
Sunshine完成签到,获得积分10
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
CipherSage应助刘搞笑采纳,获得10
10秒前
11秒前
Aries完成签到 ,获得积分10
15秒前
犹豫紫丝发布了新的文献求助10
20秒前
20秒前
21秒前
21秒前
tier3完成签到,获得积分10
22秒前
22秒前
我以為忘了想念完成签到 ,获得积分10
23秒前
helly完成签到,获得积分10
24秒前
24秒前
25秒前
ariaooo完成签到,获得积分10
26秒前
26秒前
27秒前
liu发布了新的文献求助10
28秒前
科研通AI2S应助默默忆山采纳,获得10
31秒前
sure发布了新的文献求助10
31秒前
Orange应助liu采纳,获得10
32秒前
奋斗的荆发布了新的文献求助10
33秒前
zjw发布了新的文献求助10
33秒前
顺利的丹妗完成签到,获得积分10
35秒前
LWJ完成签到 ,获得积分10
40秒前
41秒前
在水一方应助甜美无剑采纳,获得10
43秒前
chen发布了新的文献求助10
43秒前
骨科小手完成签到,获得积分10
43秒前
机灵的雁蓉完成签到 ,获得积分10
44秒前
46秒前
骨科小手发布了新的文献求助10
46秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778778
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217992
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668089
邀请新用户注册赠送积分活动 798545
科研通“疑难数据库(出版商)”最低求助积分说明 758415