A Hierarchical Multi-Action Deep Reinforcement Learning Method for Dynamic Distributed Job-Shop Scheduling Problem With Job Arrivals

计算机科学 强化学习 调度(生产过程) 作业车间调度 工作车间 分布式计算 动态优先级调度 流水车间调度 作业调度程序 工业工程 人工智能 运筹学 实时计算 数学优化 工程类 计算机网络 数学 排队 布线(电子设计自动化) 服务质量
作者
Jiang‐Ping Huang,Liang Gao,Xinyu Li
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:2
标识
DOI:10.1109/tase.2024.3380644
摘要

The Distributed Job-shop Scheduling Problem (DJSP) is a significant issue in both academic and industrial fields. In real-world production, uncertain disturbances such as job arrivals are inevitable. In the paper, the DJSP with job arrivals is addressed with a Multi-action Deep Reinforcement Learning (MDRL) method. Firstly, a multi-action Markov Decision Process (MDP) is formulated, where a hierarchical multi-action space combining operation set and factory set is proposed. The reward function is related to the machine idle time. Additionally, the state transition is also elaborately designed, which includes four typical cases based on job arrival times. Then, a scheduling policy with two decision networks is proposed, where the Graph Neural Network (GNN) is applied to extract the intrinsic information of the scheduling scheme. A Proximal Policy Optimization (PPO) with two actor-critic frameworks is designed to train the model to achieve intelligent decision-making with hierarchical action selections. Extensive experiments are conducted based on 1350 instances. The comparison among 17 composite rules, 3 closely-rated DRL methods, and 2 metaheuristics has proven the outperformance of the proposed MDRL. The application of the MDRL in an automotive engine manufacturing company has demonstrated its engineering value in the industrial field. Note to Practitioners —The DJSP with job arrivals is a common challenge faced by equipment manufacturers, specifically in the electronic device manufacturing industry. These manufacturers are located in different areas and have varying facility configurations and operation trajectories. To address this challenge, a machine learning-based method can be applied for scheduling daily production tasks. This method divides the DJSP into two subproblems, namely job assigning and job sequencing, and uses two decision networks based on DRL to solve them. To address the uncertainty caused by job arrivals, the rescheduling process and the state update mechanism are carefully designed. A GNN is used for feature extraction at each decision point, and it feeds the decision networks with the extracted features to make the optimal selection. The proposed method has the ability of self-learning and self-adapting, and its effectiveness has been proven through experiments on 1350 test instances. Its practical application has been demonstrated in the production scenarios of an automotive engine manufacturing company. In the future, the method can be adopted to solve more complex distributed manufacturing problems that have constraints such as transportation costs and machine breakdowns.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
1111应助vv采纳,获得10
2秒前
西梅发布了新的文献求助10
5秒前
CYY发布了新的文献求助10
5秒前
5秒前
qy97发布了新的文献求助30
7秒前
杨冰发布了新的文献求助10
7秒前
9秒前
所所应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
Lucas应助科研通管家采纳,获得10
10秒前
HEIKU应助科研通管家采纳,获得10
10秒前
小二郎应助科研通管家采纳,获得10
10秒前
10秒前
Jasper应助科研通管家采纳,获得20
10秒前
HEIKU应助科研通管家采纳,获得10
11秒前
HEIKU应助科研通管家采纳,获得10
11秒前
欧贝斯特发布了新的文献求助10
14秒前
澄子完成签到 ,获得积分10
15秒前
扫地888完成签到 ,获得积分10
17秒前
西梅完成签到,获得积分10
21秒前
欧贝斯特完成签到,获得积分10
22秒前
qy97完成签到,获得积分20
28秒前
科研通AI5应助秋子采纳,获得10
30秒前
31秒前
strug783发布了新的文献求助10
37秒前
天天快乐应助小慧采纳,获得10
38秒前
axuan发布了新的文献求助20
38秒前
45秒前
46秒前
bkagyin应助52pry采纳,获得10
47秒前
48秒前
grzzz完成签到,获得积分10
49秒前
秋子发布了新的文献求助10
51秒前
51秒前
52秒前
wen完成签到,获得积分10
53秒前
echo发布了新的文献求助10
54秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780310
求助须知:如何正确求助?哪些是违规求助? 3325580
关于积分的说明 10223667
捐赠科研通 3040766
什么是DOI,文献DOI怎么找? 1668988
邀请新用户注册赠送积分活动 798962
科研通“疑难数据库(出版商)”最低求助积分说明 758648